The probability distribution function (PDF) of the given random variable X is
fX(x)=23x2, for −1≤x≤1 and fX(x)=0 elsewhere.
The cumulative distribution function (CDF) of X is
FX(x)=−∞∫xfX(t)dt
Hence
FX(x)=0, for x<1
FX(x)=1, for x>1
FX(x)=−1∫x23t2dt=21t3∣−1x=(x3+1)/2 for −1≤x≤1.
Consider the random variable Y=X2/2.
FY(y)=P(Y≤y)=P(X2/2≤y)=P(X2≤2y)
Hence
FY(y)=0, if y<0
FY(y)=1, for 2y>1 (i.e. y>1/2)
FY(y)=FX(2y)−FX(−2y)=
(1+(2y)3)/2−(1−(2y)3)/2=22y3/2
Then
fY(y)=dydFY(y)
fY(y)=32y1/2 for y∈[0,1/2] and fY(y)=0 elsewhere.
Expectation of Y is E(Y)=0∫1/2yfY(y)dy=0∫1/232y3/2dy=
=32⋅52y5/2∣01/2=3/10=0.3
Expectation of Y2 is E(Y2)=0∫1/2y2fY(y)dy=0∫1/232y5/2dy=
=32⋅72y7/2∣01/2=3/28
Variance of Y is V(Y)=E(Y2)−E(Y)2=3/28−9/100=3/175
Standard deviation is σY=V(Y)=3/175=21/35=0.131
Answer. E(Y)=0.3; σY=0.131.
Comments