The pdf of a random variable x is given by
f(x)={3/2x2,-1<y<1 both inclusive
{0,elsewhere
Find the pdf of y=(1/2)x2. Hence state the mean and standard deviation of y
The probability distribution function (PDF) of the given random variable X is
"f_X(x)=\\frac{3}{2}x^2", for "-1\\leq x\\leq 1" and "f_X(x)=0" elsewhere.
The cumulative distribution function (CDF) of X is
"F_X(x)=\\int\\limits_{-\\infty}^{x}f_X(t)dt"
Hence
"F_X(x)=0", for x<1
"F_X(x)=1", for x>1
"F_X(x)=\\int\\limits_{-1}^x\\frac{3}{2}t^2dt=\\frac{1}{2}t^3|_{-1}^x=(x^3+1)\/2" for "-1\\leq x\\leq 1".
Consider the random variable "Y=X^2\/2".
"F_Y(y)=P(Y\\leq y)=P(X^2\/2\\leq y)=P(X^2\\leq 2y)"
Hence
"F_Y(y)=0", if y<0
"F_Y(y)=1", for 2y>1 (i.e. y>1/2)
"F_Y(y)=F_X(\\sqrt{2y})-F_X(-\\sqrt{2y})="
"(1+(\\sqrt{2y})^3)\/2-(1-(\\sqrt{2y})^3)\/2=2\\sqrt{2}y^{3\/2}"
Then
"f_Y(y)=\\frac{d}{dy}F_Y(y)"
"f_Y(y)=3\\sqrt{2}y^{1\/2}" for "y\\in[0,1\/2]" and "f_Y(y)=0" elsewhere.
Expectation of "Y" is "E(Y)=\\int\\limits_0^{1\/2} yf_Y(y)dy=\\int\\limits_0^{1\/2}3\\sqrt{2}y^{3\/2}dy="
"=3\\sqrt{2}\\cdot \\frac{2}{5}y^{5\/2}|_0^{1\/2}=3\/10=0.3"
Expectation of "Y^2" is "E(Y^2)=\\int\\limits_0^{1\/2} y^2f_Y(y)dy=\\int\\limits_0^{1\/2}3\\sqrt{2}y^{5\/2}dy="
"=3\\sqrt{2}\\cdot \\frac{2}{7}y^{7\/2}|_0^{1\/2}=3\/28"
Variance of "Y" is "V(Y)=E(Y^2)-E(Y)^2=3\/28-9\/100=3\/175"
Standard deviation is "\\sigma_Y=\\sqrt{V(Y)}=\\sqrt{3\/175}=\\sqrt{21}\/35=0.131"
Answer. "E(Y)=0.3"; "\\sigma_Y=0.131".
Comments
Leave a comment