Question #214021

The pdf of a random variable x is given by

f(x)={3/2x2,-1<y<1 both inclusive

{0,elsewhere

Find the pdf of y=(1/2)x2. Hence state the mean and standard deviation of y


1
Expert's answer
2021-07-13T11:48:09-0400

The probability distribution function (PDF) of the given random variable X is

fX(x)=32x2f_X(x)=\frac{3}{2}x^2, for 1x1-1\leq x\leq 1 and fX(x)=0f_X(x)=0 elsewhere.

The cumulative distribution function (CDF) of X is

FX(x)=xfX(t)dtF_X(x)=\int\limits_{-\infty}^{x}f_X(t)dt

Hence

FX(x)=0F_X(x)=0, for x<1

FX(x)=1F_X(x)=1, for x>1

FX(x)=1x32t2dt=12t31x=(x3+1)/2F_X(x)=\int\limits_{-1}^x\frac{3}{2}t^2dt=\frac{1}{2}t^3|_{-1}^x=(x^3+1)/2 for 1x1-1\leq x\leq 1.


Consider the random variable Y=X2/2Y=X^2/2.

FY(y)=P(Yy)=P(X2/2y)=P(X22y)F_Y(y)=P(Y\leq y)=P(X^2/2\leq y)=P(X^2\leq 2y)

Hence

FY(y)=0F_Y(y)=0, if y<0

FY(y)=1F_Y(y)=1, for 2y>1 (i.e. y>1/2)

FY(y)=FX(2y)FX(2y)=F_Y(y)=F_X(\sqrt{2y})-F_X(-\sqrt{2y})=

(1+(2y)3)/2(1(2y)3)/2=22y3/2(1+(\sqrt{2y})^3)/2-(1-(\sqrt{2y})^3)/2=2\sqrt{2}y^{3/2}

Then

fY(y)=ddyFY(y)f_Y(y)=\frac{d}{dy}F_Y(y)

fY(y)=32y1/2f_Y(y)=3\sqrt{2}y^{1/2} for y[0,1/2]y\in[0,1/2] and fY(y)=0f_Y(y)=0 elsewhere.


Expectation of YY is E(Y)=01/2yfY(y)dy=01/232y3/2dy=E(Y)=\int\limits_0^{1/2} yf_Y(y)dy=\int\limits_0^{1/2}3\sqrt{2}y^{3/2}dy=

=3225y5/201/2=3/10=0.3=3\sqrt{2}\cdot \frac{2}{5}y^{5/2}|_0^{1/2}=3/10=0.3

Expectation of Y2Y^2 is E(Y2)=01/2y2fY(y)dy=01/232y5/2dy=E(Y^2)=\int\limits_0^{1/2} y^2f_Y(y)dy=\int\limits_0^{1/2}3\sqrt{2}y^{5/2}dy=

=3227y7/201/2=3/28=3\sqrt{2}\cdot \frac{2}{7}y^{7/2}|_0^{1/2}=3/28

Variance of YY is V(Y)=E(Y2)E(Y)2=3/289/100=3/175V(Y)=E(Y^2)-E(Y)^2=3/28-9/100=3/175

Standard deviation is σY=V(Y)=3/175=21/35=0.131\sigma_Y=\sqrt{V(Y)}=\sqrt{3/175}=\sqrt{21}/35=0.131


Answer. E(Y)=0.3E(Y)=0.3; σY=0.131\sigma_Y=0.131.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS