According to German bureau of statistics, the probability of a randomly selected 90 year old German male surviving at least another year is approximately 0.82. if a sample of 20 90 year old German males is chosen what is the probability that
Let "X=" the number of 90 year old German male surviving at least another year: "X\\sim Bin(n, p)."
Given "n=20, p=0.82, q-1-p=1-0.82=0.18."
1.
"P(X=18)=\\dbinom{20}{18}(0.82)^{18}(0.18)^{20-18}""\\approx 0.17296090701"
2.
"P(X\\geq18)=P(X=18)+P(X=19)+P(X=20)""=\\dbinom{20}{18}(0.82)^{18}(0.18)^{20-18}+\\dbinom{20}{19}(0.82)^{19}(0.18)^{20-19}"
"+\\dbinom{20}{20}(0.82)^{20}(0.18)^{20-20}"
"\\approx 0.27479318631"
3.
"=1-\\dbinom{20}{19}(0.82)^{19}(0.18)^{20-19}"
"-\\dbinom{20}{20}(0.82)^{20}(0.18)^{20-20}"
"\\approx0.8981677207"
Comments
Leave a comment