Question #208324

I. Derive the mean and variance of a uniformly distributed random variable X where X ~ U (a, b). 



II. Let X be uniformly distributed in -2 ≤ x ≤ 2 Find:

a) P(X < 1)

b) P( X - 1 ≥ 1/2 ).



1
Expert's answer
2021-06-23T13:52:20-0400

I. μ=E(X)=abxbadx=12b2a2ba=a+b2.\mu=E(X)=\int_a^b\frac{x}{b-a}dx=\frac{1}{2}\frac{b^2-a^2}{b-a}=\frac{a+b}{2}.

Var(X)=abx2badxμ2=(b3a3)3(ba)(a+b)24=(ba)212.Var(X)=\int_a^b\frac{x^2}{b-a}dx-\mu^2=\frac{(b^3-a^3)}{3(b-a)}-\frac{(a+b)^2}{4}=\frac{(b-a)^2}{12}.


II.

a) P(X<1)=1(2)2(2)=34=0.75.P(X<1)=\frac{1-(-2)}{2-(-2)}=\frac{3}{4}=0.75.


b) P(X112)=P(X32)=2322(2)=124=18=0.125.P(X-1\ge\frac{1}{2})=P(X\ge\frac{3}{2})=\frac{2-\frac{3}{2}}{2-(-2)}=\frac{\frac{1}{2}}{4}=\frac{1}{8}=0.125.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS