I. Derive the mean and variance of a uniformly distributed random variable X where X ~ U (a, b).
II. Let X be uniformly distributed in -2 ≤ x ≤ 2 Find:
a) P(X < 1)
b) P( X - 1 ≥ 1/2 ).
I. "\\mu=E(X)=\\int_a^b\\frac{x}{b-a}dx=\\frac{1}{2}\\frac{b^2-a^2}{b-a}=\\frac{a+b}{2}."
"Var(X)=\\int_a^b\\frac{x^2}{b-a}dx-\\mu^2=\\frac{(b^3-a^3)}{3(b-a)}-\\frac{(a+b)^2}{4}=\\frac{(b-a)^2}{12}."
II.
a) "P(X<1)=\\frac{1-(-2)}{2-(-2)}=\\frac{3}{4}=0.75."
b) "P(X-1\\ge\\frac{1}{2})=P(X\\ge\\frac{3}{2})=\\frac{2-\\frac{3}{2}}{2-(-2)}=\\frac{\\frac{1}{2}}{4}=\\frac{1}{8}=0.125."
Comments
Leave a comment