We have population values "3,8,10,15" population size "N=4" and sample size "n=2."
a.
Population mean
"mean=\\mu=\\dfrac{\\displaystyle\\sum_{i=1}^nx_i}{n}"
"\\mu=\\dfrac{3+8+10+15}{4}=9"
b.
Population variance
"\\sigma^2=\\dfrac{\\displaystyle\\sum_{i=1}^n(x_i-\\mu)^2}{n}"
"\\sigma^2=\\dfrac{1}{4}\\big((3-9)^2+(8-9)^2+(10-9)^2"
"(15-9)^2\\big)=\\dfrac{74}{4}=18.5"
c.
Population standard deviation
"\\sigma=\\sqrt{\\sigma^2}=\\sqrt{\\dfrac{74}{4}}=\\dfrac{\\sqrt{74}}{2}\\approx4.301163"
"Var(\\bar{X})=\\sum\\bar{X}^2f(\\bar{X})-(\\sum\\bar{X}f(\\bar{X}))^2"
d.
The number of possible samples which can be drawn without replacement is
"\\dbinom{N}{n}=\\dbinom{4}{2}=6"
2.
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c}\n Sample & Sample & Sample \\ mean \\\\\n No. & values & (\\bar{X}) \\\\ \\hline\n 1 & 3,8 & 5.5 \\\\\n \\hdashline\n 2 & 3,10 & 6.5 \\\\\n \\hdashline\n 3 & 3,15 & 9.0 \\\\\n \\hdashline\n 4 & 8,10 & 9.0\\\\\n \\hdashline\n 5 & 8,15 & 11.5 \\\\\n\\hdashline\n 6 & 10,15 & 12.5 \\\\\n \\hline\n\\end{array}"
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c:c:c}\n \\bar{X} & f & f(\\bar{X}) & \\bar{X}f(\\bar{X})& \\bar{X}^2f(\\bar{X}) \\\\ \\hline\n 5.5 & 1 & 1\/6 & 11\/12 & 121\/24 \\\\\n \\hdashline\n 6.5 & 1 & 1\/6 & 13\/12 & 169\/24 \\\\\n \\hdashline\n 9.0 & 2 & 1\/3 & 36\/12 & 648\/24 \\\\\n \\hdashline\n 11.5 & 1 & 1\/6 & 23\/12 & 529\/24 \\\\\n \\hdashline\n 12.5 & 1 & 1\/6 & 25\/12 & 625\/24 \\\\\n \\hdashline\n Total & 6 & 1 & 9 & 523\/6 \\\\ \\hline\n\\end{array}"
The mean of the sampling distribution of means
"E(\\bar{X})=\\sum\\bar{X}f(\\bar{X})=9"The mean of the sampling distribution of the sample means is equal to the
the mean of the population.
"E(\\bar{X})=9=\\mu"
e.
"Var(\\bar{X})=\\sum\\bar{X}^2f(\\bar{X})-(\\sum\\bar{X}f(\\bar{X}))^2"
"=\\dfrac{523}{6}-(9)^2=\\dfrac{37}{6}"
The standard deviation of the sampling distribution of the sample means
"\\sqrt{Var(\\bar{X})}=\\sqrt{\\dfrac{37}{6}}\\approx2.483277"Verification:
"Var(\\bar{X})=\\dfrac{\\sigma^2}{n}(\\dfrac{N-n}{N-1})=\\dfrac{18.5}{2}(\\dfrac{4-2}{4-1})"
"=\\dfrac{37}{6}, True"
Comments
Leave a comment