Find the following data calculate fisher's ideal inderx and proves that it satisfies TRT and FRT
baseyear current year
Commodity price Qty price Qty
A 4 60 6 60
B 10 30 12 24
C 6 50 10 56
D 2 100 2 120
Fisher's ideal Index is
"=\\sqrt{\\dfrac{\\sum P_1Q_o}{\\sum P_oQ_o}\\times \\dfrac{\\sum P_1Q_1}{\\sum P_oQ_1}}\\times 100\\\\[9pt]=\\sqrt{\\dfrac{1420}{1040}\\times \\dfrac{1148}{1056}}\\times 100=1.3679\\times 100=136.79"
"TRT\\implies P_{o1}\\times P_{1o}=1"
LHS-
"=\\sqrt{\\dfrac{\\sum P_1Q_o}{\\sum P_oQ_o}\\times \\dfrac{\\sum P_1Q_1}{\\sum P_oQ_1}}\\times \\sqrt{\\dfrac{\\sum P_oQ_1}{\\sum P_1Q_1}\\times \\dfrac{\\sum P_o Q_o}{P_1 Q_o}}\\\\[9pt]=\\sqrt{1}=1=RHS"
TRT satisfied.
"FRT\\implies P_{o1}\\times Q_{o1}=\\dfrac{\\sum P_1Q_1}{\\sum P_o Q_o}"
So LHS "=\\sqrt{\\dfrac{\\sum P_1Q_o}{\\sum P_oQ_o}\\times \\dfrac{\\sum P_1Q_1}{\\sum P_oQ_1}}\\times \\sqrt{\\dfrac{\\sum Q_1P_o}{\\sum P_oQ_o}\\times \\dfrac{\\sum Q_1P_1}{\\sum Q_oP_1}}"
"=\\sqrt{\\dfrac{( 1448)^2}{(1040)^2}}=\\dfrac{1148}{1040}=\\dfrac{\\sum P_1Q_1}{\\sum P_oQ_o}" =RHs
FRT Satisfied.
Comments
Leave a comment