Question #208224

Find the following data calculate fisher's ideal inderx and proves that it satisfies TRT and FRT

baseyear current year

Commodity price Qty price Qty

A 4 60 6 60

B 10 30 12 24

C 6 50 10 56

D 2 100 2 120


1
Expert's answer
2021-06-21T10:55:42-0400



Fisher's ideal Index is

=P1QoPoQo×P1Q1PoQ1×100=14201040×11481056×100=1.3679×100=136.79=\sqrt{\dfrac{\sum P_1Q_o}{\sum P_oQ_o}\times \dfrac{\sum P_1Q_1}{\sum P_oQ_1}}\times 100\\[9pt]=\sqrt{\dfrac{1420}{1040}\times \dfrac{1148}{1056}}\times 100=1.3679\times 100=136.79


TRT    Po1×P1o=1TRT\implies P_{o1}\times P_{1o}=1


LHS-

=P1QoPoQo×P1Q1PoQ1×PoQ1P1Q1×PoQoP1Qo=1=1=RHS=\sqrt{\dfrac{\sum P_1Q_o}{\sum P_oQ_o}\times \dfrac{\sum P_1Q_1}{\sum P_oQ_1}}\times \sqrt{\dfrac{\sum P_oQ_1}{\sum P_1Q_1}\times \dfrac{\sum P_o Q_o}{P_1 Q_o}}\\[9pt]=\sqrt{1}=1=RHS


TRT satisfied.


FRT    Po1×Qo1=P1Q1PoQoFRT\implies P_{o1}\times Q_{o1}=\dfrac{\sum P_1Q_1}{\sum P_o Q_o}


So LHS =P1QoPoQo×P1Q1PoQ1×Q1PoPoQo×Q1P1QoP1=\sqrt{\dfrac{\sum P_1Q_o}{\sum P_oQ_o}\times \dfrac{\sum P_1Q_1}{\sum P_oQ_1}}\times \sqrt{\dfrac{\sum Q_1P_o}{\sum P_oQ_o}\times \dfrac{\sum Q_1P_1}{\sum Q_oP_1}}


=(1448)2(1040)2=11481040=P1Q1PoQo=\sqrt{\dfrac{( 1448)^2}{(1040)^2}}=\dfrac{1148}{1040}=\dfrac{\sum P_1Q_1}{\sum P_oQ_o} =RHs


FRT Satisfied.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS