Question #208319

A random variable X is gamma distributed with α = 3, β = 2. Find: P(l ≤ X ≤ 2)


1
Expert's answer
2021-06-21T17:28:35-0400

If the random variable has a distribution gamma, then the distribution function has the form

F(x,α,β)=1i=0αexβ(xβ)i1i!=1i=03ex2(x2)i1i!,x>0F\left( {x,\alpha ,\beta } \right) = 1 - \sum\limits_{i = 0}^\alpha {{e^{ - \frac{x}{\beta }}}} {\left( {\frac{x}{\beta }} \right)^i}\frac{1}{{i!}} = 1 - \sum\limits_{i = 0}^3 {{e^{ - \frac{x}{2}}}} {\left( {\frac{x}{2}} \right)^i}\frac{1}{{i!}},\,\,x > 0

Then

P(1x2)=F(2)F(1)=1i=03e22(22)i1i!(1i=03e12(12)i1i!)=e12(1+12+18+148)e1(1+1+12+16)0.017P(1 \le x \le 2) = F(2) - F(1) = 1 - \sum\limits_{i = 0}^3 {{e^{ - \frac{2}{2}}}} {\left( {\frac{2}{2}} \right)^i}\frac{1}{{i!}} - \left( {1 - \sum\limits_{i = 0}^3 {{e^{ - \frac{1}{2}}}} {{\left( {\frac{1}{2}} \right)}^i}\frac{1}{{i!}}} \right) = {e^{ - \frac{1}{2}}}\left( {1 + \frac{1}{2} + \frac{1}{8} + \frac{1}{{48}}} \right) - {e^{ - 1}}\left( {1 + 1 + \frac{1}{2} + \frac{1}{6}} \right) \approx 0.017

Answer: P(1x2)0.017P(1 \le x \le 2) \approx 0.017


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS