A random variable X is gamma distributed with α = 3, β = 2. Find: P(l ≤ X ≤ 2)
If the random variable has a distribution gamma, then the distribution function has the form
"F\\left( {x,\\alpha ,\\beta } \\right) = 1 - \\sum\\limits_{i = 0}^\\alpha {{e^{ - \\frac{x}{\\beta }}}} {\\left( {\\frac{x}{\\beta }} \\right)^i}\\frac{1}{{i!}} = 1 - \\sum\\limits_{i = 0}^3 {{e^{ - \\frac{x}{2}}}} {\\left( {\\frac{x}{2}} \\right)^i}\\frac{1}{{i!}},\\,\\,x > 0"
Then
"P(1 \\le x \\le 2) = F(2) - F(1) = 1 - \\sum\\limits_{i = 0}^3 {{e^{ - \\frac{2}{2}}}} {\\left( {\\frac{2}{2}} \\right)^i}\\frac{1}{{i!}} - \\left( {1 - \\sum\\limits_{i = 0}^3 {{e^{ - \\frac{1}{2}}}} {{\\left( {\\frac{1}{2}} \\right)}^i}\\frac{1}{{i!}}} \\right) = {e^{ - \\frac{1}{2}}}\\left( {1 + \\frac{1}{2} + \\frac{1}{8} + \\frac{1}{{48}}} \\right) - {e^{ - 1}}\\left( {1 + 1 + \\frac{1}{2} + \\frac{1}{6}} \\right) \\approx 0.017"
Answer: "P(1 \\le x \\le 2) \\approx 0.017"
Comments
Leave a comment