The average number of pages in a novel is 326 with a standard deviation of 24
pages. If a sample of 50 novels is randomly chosen, what is the probability that
the average number of pages in these books is between 319 and 331?
μ=326σ=24n=50P(319<Xˉ<331)=P(Xˉ<331)−P(Xˉ<319)=P(Z<331−32624/50)−P(Z<319−32624/50)=P(Z<1.473)−P(Z<−2.062)=0.9296−0.0196=0.91\mu=326 \\ \sigma=24 \\ n=50 \\ P(319< \bar{X}<331) = P(\bar{X}<331) -P(\bar{X}<319) \\ = P(Z <\frac{331-326}{24/ \sqrt{50}}) -P(Z< \frac{319-326}{24 / \sqrt{50}}) \\ = P(Z< 1.473) -P(Z< -2.062) \\ = 0.9296 -0.0196 \\ = 0.91μ=326σ=24n=50P(319<Xˉ<331)=P(Xˉ<331)−P(Xˉ<319)=P(Z<24/50331−326)−P(Z<24/50319−326)=P(Z<1.473)−P(Z<−2.062)=0.9296−0.0196=0.91
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment