Answer to Question #191184 in Statistics and Probability for Dani

Question #191184

1)Given P (A) = 0.30, P (B) = 0.78, P (A∩ B) = 0.16; evaluate

A) A complement intersection B complement

B) A complement union B complement

C) A intersection B complement

 


1
Expert's answer
2021-05-10T18:23:57-0400

A) Let's find

p(A)=1p(A)=10.3=0.7p(\overline A ) = 1 - p(A) = 1 - 0.3 = 0.7

p(B)=1p(B)=10.78=0.22p(\overline B ) = 1 - p(B) = 1 - 0.78 = 0.22

p(AB)=p(AB)=10.16=0.84p(\overline {A \cap B} ) = p\left( {\overline A \cup \overline B } \right) = 1 - 0.16 = 0.84

Since p(AB)=p(A)+p(B)p(AB)p\left( {\overline A \cup \overline B } \right) = p(\overline A ) + p(\overline B ) - p(\overline A \cap \overline B ) then

p(AB)=p(A)+p(B)p(AB)=0.7+0.220.84=0.08p(\overline A \cap \overline B ) = p(\overline A ) + p(\overline B ) - p\left( {\overline A \cup \overline B } \right) = 0.7 + 0.22 - 0.84 = 0.08

Answer: p(AB)=0.08p(\overline A \cap \overline B ) = 0.08

B) p(AB)=p(AB)=10.16=0.84p\left( {\overline A \cup \overline B } \right) = p(\overline {A \cap B} ) = 1 - 0.16 = 0.84

Answer: p(AB)=0.84p\left( {\overline A \cup \overline B } \right) = 0.84

C) p(AB)=p(A\B)=p(A)p(AB)=0.30.16=0.14p(A \cap \overline B ) = p(A\backslash B) = p(A) - p(A \cap B) = 0.3 - 0.16 = 0.14

Answer: p(AB)=0.14p(A \cap \overline B ) = 0.14


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
11.05.21, 18:26

Dear Dani, You are welcome. We are glad to be helpful. If you liked our service, please press a like-button beside the answer field. Thank you!

Dani
11.05.21, 08:21

I thank you from depth of my heart

Leave a comment