Question #190957

1)Suppose that the population distribution of the gripping strengths of industrial workers is known to have a mean of 110 and standard deviation of 10. For a random sample of 75 workers, what is the probability that the sample mean gripping strength will be

a)Between 109 and 112? 

b)Greater than112?

2)On the average, five smokers pass a certain street corners every ten minutes, what is the probability that during a given 10minutes the number of smokers passing will be 

A)6 or fewer 

B)7 or more 

C)Exactly 8


1
Expert's answer
2021-05-13T01:20:11-0400

1)

μ=110σ=10n=75\mu = 110 \\ \sigma = 10 \\ n = 75 \\

a)

P(109<X<112)=P(X<112)P(X<109)=P(Z<11211010/75)P(Z<10911010/75)=P(Z<1.733)P(Z<0.866)=0.95840.1932=0.7652P(109<X<112) = P(X<112)-P(X<109) \\ = P(Z< \frac{112-110}{10/ \sqrt{75}}) -P(Z< \frac{109-110}{10/ \sqrt{75}}) \\ = P(Z<1.733)-P(Z< -0.866) \\ = 0.9584 -0.1932 \\ = 0.7652

b)

P(X>112)=1P(X<112)=1P(Z<11211010/75)=1P(Z<1.733)=10.9584=0.0416P(X>112) = 1-P(X<112) \\ = 1 -P(Z< \frac{112-110}{10/ \sqrt{75}}) \\ = 1 -P(Z<1.733) \\ = 1 -0.9584 \\ = 0.0416

2) Assuming that the number of smokers follows Poisson distribution, if X is a Poisson random variable with parameter λ then

P(X=x)=λx×eλx!λ=5P(X=x) = \frac{λ^x \times e^{-λ}}{x!} \\ λ = 5

A) P(X≤6) = P(X=0) + P(X=1) + P(X=2) + P(X=3) + P(X=4) + P(X=5) + P(X=6)

P(X=0)=50×e50!=0.0067371=0.006737P(X=1)=51×e51!=0.033681=0.03368P(X=2)=52×e52!=0.168442=0.08422P(X=3)=53×e53!=0.842246=0.14037P(X=4)=54×e54!=4.2112124=0.17546P(X=5)=55×e55!=21.056120=0.17546P(X=6)=56×e56!=105.28720=0.14622P(X6)=P(X=0)+P(X=1)+P(X=2)+P(X=3)+P(X=4)+P(X=5)+P(X=6)P(X6)=0.006737+0.03368+0.08422+0.14037+0.17546+0.17546+0.14622=0.762447P(X=0) = \frac{5^0 \times e^{-5}}{0!} \\ = \frac{0.006737}{1} \\ = 0.006737 \\ P(X=1) = \frac{5^1 \times e^{-5}}{1!} \\ = \frac{0.03368}{1} \\ = 0.03368 \\ P(X=2) = \frac{5^2 \times e^{-5}}{2!} \\ = \frac{0.16844}{2} \\ = 0.08422 \\ P(X=3) = \frac{5^3 \times e^{-5}}{3!} \\ = \frac{0.84224}{6} \\ = 0.14037 \\ P(X=4) = \frac{5^4 \times e^{-5}}{4!} \\ = \frac{4.21121}{24} \\ = 0.17546 \\ P(X=5) = \frac{5^5 \times e^{-5}}{5!} \\ = \frac{21.056}{120} \\ = 0.17546 \\ P(X=6) = \frac{5^6 \times e^{-5}}{6!} \\ = \frac{105.28}{720} \\ = 0.14622 \\ P(X≤6) = P(X=0) + P(X=1) + P(X=2) + P(X=3) + P(X=4) + P(X=5) + P(X=6) \\ P(X≤6) = 0.006737 + 0.03368 + 0.08422 + 0.14037 + 0.17546 + 0.17546 + 0.14622 \\ = 0.762447

B) P(X≥7) = 1 -P(X<7)

P(X<7) = P(≤6)

P(X6)=0.762447P(X7)=10.762447=0.237553P(X≤6) = 0.762447 \\ P(X≥7) = 1 -0.762447 \\ = 0.237553

C) the probability that, during a given 10-minute period, the number of smokers passing the street corner will be eight is:

P(X=8)=58×e58!=2632.0140320=0.065P(X=8) = \frac{5^8 \times e^{-5}}{8!} \\ = \frac{2632.01}{40320} \\ = 0.065


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS