1)
μ = 110 σ = 10 n = 75 \mu = 110 \\
\sigma = 10 \\
n = 75 \\ μ = 110 σ = 10 n = 75
a)
P ( 109 < X < 112 ) = P ( X < 112 ) − P ( X < 109 ) = P ( Z < 112 − 110 10 / 75 ) − P ( Z < 109 − 110 10 / 75 ) = P ( Z < 1.733 ) − P ( Z < − 0.866 ) = 0.9584 − 0.1932 = 0.7652 P(109<X<112) = P(X<112)-P(X<109) \\
= P(Z< \frac{112-110}{10/ \sqrt{75}}) -P(Z< \frac{109-110}{10/ \sqrt{75}}) \\
= P(Z<1.733)-P(Z< -0.866) \\
= 0.9584 -0.1932 \\
= 0.7652 P ( 109 < X < 112 ) = P ( X < 112 ) − P ( X < 109 ) = P ( Z < 10/ 75 112 − 110 ) − P ( Z < 10/ 75 109 − 110 ) = P ( Z < 1.733 ) − P ( Z < − 0.866 ) = 0.9584 − 0.1932 = 0.7652
b)
P ( X > 112 ) = 1 − P ( X < 112 ) = 1 − P ( Z < 112 − 110 10 / 75 ) = 1 − P ( Z < 1.733 ) = 1 − 0.9584 = 0.0416 P(X>112) = 1-P(X<112) \\
= 1 -P(Z< \frac{112-110}{10/ \sqrt{75}}) \\
= 1 -P(Z<1.733) \\
= 1 -0.9584 \\
= 0.0416 P ( X > 112 ) = 1 − P ( X < 112 ) = 1 − P ( Z < 10/ 75 112 − 110 ) = 1 − P ( Z < 1.733 ) = 1 − 0.9584 = 0.0416
2) Assuming that the number of smokers follows Poisson distribution, if X is a Poisson random variable with parameter λ then
P ( X = x ) = λ x × e − λ x ! λ = 5 P(X=x) = \frac{λ^x \times e^{-λ}}{x!} \\
λ = 5 P ( X = x ) = x ! λ x × e − λ λ = 5
A) P(X≤6) = P(X=0) + P(X=1) + P(X=2) + P(X=3) + P(X=4) + P(X=5) + P(X=6)
P ( X = 0 ) = 5 0 × e − 5 0 ! = 0.006737 1 = 0.006737 P ( X = 1 ) = 5 1 × e − 5 1 ! = 0.03368 1 = 0.03368 P ( X = 2 ) = 5 2 × e − 5 2 ! = 0.16844 2 = 0.08422 P ( X = 3 ) = 5 3 × e − 5 3 ! = 0.84224 6 = 0.14037 P ( X = 4 ) = 5 4 × e − 5 4 ! = 4.21121 24 = 0.17546 P ( X = 5 ) = 5 5 × e − 5 5 ! = 21.056 120 = 0.17546 P ( X = 6 ) = 5 6 × e − 5 6 ! = 105.28 720 = 0.14622 P ( X ≤ 6 ) = P ( X = 0 ) + P ( X = 1 ) + P ( X = 2 ) + P ( X = 3 ) + P ( X = 4 ) + P ( X = 5 ) + P ( X = 6 ) P ( X ≤ 6 ) = 0.006737 + 0.03368 + 0.08422 + 0.14037 + 0.17546 + 0.17546 + 0.14622 = 0.762447 P(X=0) = \frac{5^0 \times e^{-5}}{0!} \\
= \frac{0.006737}{1} \\
= 0.006737 \\
P(X=1) = \frac{5^1 \times e^{-5}}{1!} \\
= \frac{0.03368}{1} \\
= 0.03368 \\
P(X=2) = \frac{5^2 \times e^{-5}}{2!} \\
= \frac{0.16844}{2} \\
= 0.08422 \\
P(X=3) = \frac{5^3 \times e^{-5}}{3!} \\
= \frac{0.84224}{6} \\
= 0.14037 \\
P(X=4) = \frac{5^4 \times e^{-5}}{4!} \\
= \frac{4.21121}{24} \\
= 0.17546 \\
P(X=5) = \frac{5^5 \times e^{-5}}{5!} \\
= \frac{21.056}{120} \\
= 0.17546 \\
P(X=6) = \frac{5^6 \times e^{-5}}{6!} \\
= \frac{105.28}{720} \\
= 0.14622 \\
P(X≤6) = P(X=0) + P(X=1) + P(X=2) + P(X=3) + P(X=4) + P(X=5) + P(X=6) \\
P(X≤6) = 0.006737 + 0.03368 + 0.08422 + 0.14037 + 0.17546 + 0.17546 + 0.14622 \\
= 0.762447 P ( X = 0 ) = 0 ! 5 0 × e − 5 = 1 0.006737 = 0.006737 P ( X = 1 ) = 1 ! 5 1 × e − 5 = 1 0.03368 = 0.03368 P ( X = 2 ) = 2 ! 5 2 × e − 5 = 2 0.16844 = 0.08422 P ( X = 3 ) = 3 ! 5 3 × e − 5 = 6 0.84224 = 0.14037 P ( X = 4 ) = 4 ! 5 4 × e − 5 = 24 4.21121 = 0.17546 P ( X = 5 ) = 5 ! 5 5 × e − 5 = 120 21.056 = 0.17546 P ( X = 6 ) = 6 ! 5 6 × e − 5 = 720 105.28 = 0.14622 P ( X ≤ 6 ) = P ( X = 0 ) + P ( X = 1 ) + P ( X = 2 ) + P ( X = 3 ) + P ( X = 4 ) + P ( X = 5 ) + P ( X = 6 ) P ( X ≤ 6 ) = 0.006737 + 0.03368 + 0.08422 + 0.14037 + 0.17546 + 0.17546 + 0.14622 = 0.762447
B) P(X≥7) = 1 -P(X<7)
P(X<7) = P(≤6)
P ( X ≤ 6 ) = 0.762447 P ( X ≥ 7 ) = 1 − 0.762447 = 0.237553 P(X≤6) = 0.762447 \\
P(X≥7) = 1 -0.762447 \\
= 0.237553 P ( X ≤ 6 ) = 0.762447 P ( X ≥ 7 ) = 1 − 0.762447 = 0.237553
C) the probability that, during a given 10-minute period, the number of smokers passing the street corner will be eight is:
P ( X = 8 ) = 5 8 × e − 5 8 ! = 2632.01 40320 = 0.065 P(X=8) = \frac{5^8 \times e^{-5}}{8!} \\
= \frac{2632.01}{40320} \\
= 0.065 P ( X = 8 ) = 8 ! 5 8 × e − 5 = 40320 2632.01 = 0.065
Comments