"f(x)=2we^{-2x}+3(1-w)e^{-3x}"
"f_X(x)=\\displaystyle\\intop^1_0(2we^{-2x}+3(1-w)e^{-3x})dw=e^{-2x}-\\frac{3e^{-3x}}{2}"
a.
"E(X)=\\displaystyle\\intop^{\\infin}_{0}x(e^{-2x}-\\frac{3e^{-3x}}{2})dx="
"=(-\\frac{(2x+1)e^{-2x}}{4}+\\frac{(3x+1)e^{-3x}}{6})|^{\\infin}_{0}=\\frac{1}{12}"
b.
"V(X)=\\displaystyle\\intop^{\\infin}_{0}x^2(e^{-2x}-\\frac{3e^{-3x}}{2})dx-(E(X))^2="
"=(-\\frac{(2x^2+2x+1)e^{-2x}}{4}+\\frac{(9x^2+6x+2)e^{-3x}}{18})|^{\\infin}_{0}-\\frac{1}{144}=\\frac{5}{36}-\\frac{1}{144}=\\frac{19}{144}"
c.
"P(X>1)=\\displaystyle\\intop^{\\infin}_{1}(e^{-2x}-\\frac{3e^{-3x}}{2})dx="
"=(-\\frac{e^{-2x}}{2}+\\frac{e^{-3x}}{2})|^{\\infin}_1=\\frac{e^{-2}}{2}-\\frac{e^{-3}}{2}=0.0428"
Comments
Leave a comment