f(x)=2we−2x+3(1−w)e−3x
fX(x)=0∫1(2we−2x+3(1−w)e−3x)dw=e−2x−23e−3x
a.
E(X)=0∫∞x(e−2x−23e−3x)dx=
=(−4(2x+1)e−2x+6(3x+1)e−3x)∣0∞=121
b.
V(X)=0∫∞x2(e−2x−23e−3x)dx−(E(X))2=
=(−4(2x2+2x+1)e−2x+18(9x2+6x+2)e−3x)∣0∞−1441=365−1441=14419
c.
P(X>1)=1∫∞(e−2x−23e−3x)dx=
=(−2e−2x+2e−3x)∣1∞=2e−2−2e−3=0.0428
Comments