1. Two players A and B are competing at a trivia quiz game involving a series of questions. On any individual question, the probabilities that A and B give the correct answer areαandβrespectively, for all questions, with outcomes for different questions being independent. The game finishes when a player wins by answering a question correctly. Compute the probability that A wins if
a) A answers the first question,
b) B answers the first question.
sample space S to be all possible infinite sequences of answers
even A- A answers the first question
event F- game ends after the first question
event W- A wins.
We want "P(W|A)" and "P(W|\\overline A )"
Using the Theorem of Total Probability, and the partition given by
"P(W|A) = P(W|A \\cap F)P(F|A) + P(W|A \\cap \\overline F )P(\\overline F |A)"
Now, clearly
"P(F|A) = \\alpha ,\\,\\,P\\left( {\\overline F |A} \\right) = 1 - \\alpha" and "P(W|A \\cap F) = 1" , but "P(W|A \\cap \\overline F ) = P(W|\\overline A )" , so that "P(W|A) = 1 \\cdot \\alpha + P(W|\\overline A )\\left( {1 - \\alpha } \\right) = \\alpha + P(W|\\overline A )\\left( {1 - \\alpha } \\right)" .
Similarly,
"P(W|\\overline A ) = P(W|\\overline A \\cap F)P(F|\\overline A ) + P(W|\\overline A \\cap \\overline F )P(\\overline F |\\overline A )"
We have
"P(F|\\overline A ) = \\beta ,\\,\\,P(\\overline F |\\overline A ) = 1 - \\beta" , but
"P(W|\\overline A \\cap F) = 0" . Finally
"P(W|\\overline A \\cap \\overline F ) = P(W|A)" , so that
"P(W|\\overline A ) = 0 \\cdot \\beta + P(W|A)\\left( {1 - \\beta } \\right) = P(W|A)\\left( {1 - \\beta } \\right)"
a) "P(W|A) = \\alpha + P(W|\\overline A )\\left( {1 - \\alpha } \\right) = \\alpha + P(W|A)\\left( {1 - \\beta } \\right)\\left( {1 - \\alpha } \\right) \\Rightarrow P(W|A) - P(W|A)\\left( {1 - \\beta } \\right)\\left( {1 - \\alpha } \\right) = \\alpha \\Rightarrow P(W|A)(1 - \\left( {1 - \\beta } \\right)\\left( {1 - \\alpha } \\right)) = \\alpha \\Rightarrow P(W|A) = \\frac{\\alpha }{{1 - \\left( {1 - \\beta } \\right)\\left( {1 - \\alpha } \\right)}}"
Answer: "P(W|A) = \\frac{\\alpha }{{1 - \\left( {1 - \\beta } \\right)\\left( {1 - \\alpha } \\right)}}"
b) "P(W|\\overline A )\\left( {1 - \\alpha } \\right) = P(W|A) - \\alpha \\Rightarrow P(W|\\overline A )\\left( {1 - \\alpha } \\right) = \\frac{\\alpha }{{1 - \\left( {1 - \\beta } \\right)\\left( {1 - \\alpha } \\right)}} - \\alpha = \\frac{{\\alpha - \\alpha \\left( {1 - \\left( {1 - \\beta } \\right)\\left( {1 - \\alpha } \\right)} \\right)}}{{1 - \\left( {1 - \\beta } \\right)\\left( {1 - \\alpha } \\right)}} = \\frac{{\\alpha \\left( {1 - \\beta } \\right)\\left( {1 - \\alpha } \\right)}}{{1 - \\left( {1 - \\beta } \\right)\\left( {1 - \\alpha } \\right)}} \\Rightarrow P(W|\\overline A ) = \\frac{{\\alpha \\left( {1 - \\beta } \\right)}}{{1 - \\left( {1 - \\beta } \\right)\\left( {1 - \\alpha } \\right)}}"
Answer: "P(W|\\overline A ) = \\frac{{\\alpha \\left( {1 - \\beta } \\right)}}{{1 - \\left( {1 - \\beta } \\right)\\left( {1 - \\alpha } \\right)}}"
Comments
Dear Haribhau Auti, You are welcome. We are glad to be helpful. If you liked our service, please press a like-button beside the answer field. Thank you!
Great
Leave a comment