Answer to Question #177862 in Statistics and Probability for Jessica

Question #177862

1.     Two players A and B are competing at a trivia quiz game involving a series of questions. On any individual question, the probabilities that A and B give the correct answer areαandβrespectively, for all questions, with outcomes for different questions being independent. The game finishes when a player wins by answering a question correctly. Compute the probability that A wins if

a)    A answers the first question,

b)    B answers the first question.



1
Expert's answer
2021-04-14T12:30:45-0400

sample space S to be all possible infinite sequences of answers

even A- A answers the first question

event F- game ends after the first question

event W- A wins.

We want P(WA)P(W|A) and P(WA)P(W|\overline A )

Using the Theorem of Total Probability, and the partition given by

P(WA)=P(WAF)P(FA)+P(WAF)P(FA)P(W|A) = P(W|A \cap F)P(F|A) + P(W|A \cap \overline F )P(\overline F |A)

Now, clearly

P(FA)=α,  P(FA)=1αP(F|A) = \alpha ,\,\,P\left( {\overline F |A} \right) = 1 - \alpha and P(WAF)=1P(W|A \cap F) = 1 , but P(WAF)=P(WA)P(W|A \cap \overline F ) = P(W|\overline A ) , so that P(WA)=1α+P(WA)(1α)=α+P(WA)(1α)P(W|A) = 1 \cdot \alpha + P(W|\overline A )\left( {1 - \alpha } \right) = \alpha + P(W|\overline A )\left( {1 - \alpha } \right) .

Similarly,

P(WA)=P(WAF)P(FA)+P(WAF)P(FA)P(W|\overline A ) = P(W|\overline A \cap F)P(F|\overline A ) + P(W|\overline A \cap \overline F )P(\overline F |\overline A )

We have

P(FA)=β,  P(FA)=1βP(F|\overline A ) = \beta ,\,\,P(\overline F |\overline A ) = 1 - \beta , but

P(WAF)=0P(W|\overline A \cap F) = 0 . Finally

P(WAF)=P(WA)P(W|\overline A \cap \overline F ) = P(W|A) , so that

P(WA)=0β+P(WA)(1β)=P(WA)(1β)P(W|\overline A ) = 0 \cdot \beta + P(W|A)\left( {1 - \beta } \right) = P(W|A)\left( {1 - \beta } \right)

a) P(WA)=α+P(WA)(1α)=α+P(WA)(1β)(1α)P(WA)P(WA)(1β)(1α)=αP(WA)(1(1β)(1α))=αP(WA)=α1(1β)(1α)P(W|A) = \alpha + P(W|\overline A )\left( {1 - \alpha } \right) = \alpha + P(W|A)\left( {1 - \beta } \right)\left( {1 - \alpha } \right) \Rightarrow P(W|A) - P(W|A)\left( {1 - \beta } \right)\left( {1 - \alpha } \right) = \alpha \Rightarrow P(W|A)(1 - \left( {1 - \beta } \right)\left( {1 - \alpha } \right)) = \alpha \Rightarrow P(W|A) = \frac{\alpha }{{1 - \left( {1 - \beta } \right)\left( {1 - \alpha } \right)}}

Answer: P(WA)=α1(1β)(1α)P(W|A) = \frac{\alpha }{{1 - \left( {1 - \beta } \right)\left( {1 - \alpha } \right)}}

b) P(WA)(1α)=P(WA)αP(WA)(1α)=α1(1β)(1α)α=αα(1(1β)(1α))1(1β)(1α)=α(1β)(1α)1(1β)(1α)P(WA)=α(1β)1(1β)(1α)P(W|\overline A )\left( {1 - \alpha } \right) = P(W|A) - \alpha \Rightarrow P(W|\overline A )\left( {1 - \alpha } \right) = \frac{\alpha }{{1 - \left( {1 - \beta } \right)\left( {1 - \alpha } \right)}} - \alpha = \frac{{\alpha - \alpha \left( {1 - \left( {1 - \beta } \right)\left( {1 - \alpha } \right)} \right)}}{{1 - \left( {1 - \beta } \right)\left( {1 - \alpha } \right)}} = \frac{{\alpha \left( {1 - \beta } \right)\left( {1 - \alpha } \right)}}{{1 - \left( {1 - \beta } \right)\left( {1 - \alpha } \right)}} \Rightarrow P(W|\overline A ) = \frac{{\alpha \left( {1 - \beta } \right)}}{{1 - \left( {1 - \beta } \right)\left( {1 - \alpha } \right)}}

Answer: P(WA)=α(1β)1(1β)(1α)P(W|\overline A ) = \frac{{\alpha \left( {1 - \beta } \right)}}{{1 - \left( {1 - \beta } \right)\left( {1 - \alpha } \right)}}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
11.04.21, 17:45

Dear Haribhau Auti, You are welcome. We are glad to be helpful. If you liked our service, please press a like-button beside the answer field. Thank you!

shadrack senya
06.04.21, 17:16

Great

Leave a comment