1. Find 95% confidence limits for the mean of a normally distributed population from which the following samples was taken 15,17,10,18,16,9,7,11,13,14.
c=0.95n=10xˉ=15+17+10+18+16+9+7+11+13+1410=13s=(15−13)2+(17−13)2+(10−13)2+(18−13)2+(16−13)2+(9−13)2+(7−13)2+(11−13)2+(13−13)2+(14−13)210−1=4+16+9+25+9+16+36+4+0+19=3.651df=n−1=10−1=9α=1−c2=0.025tα/2=2.26216c = 0.95 \\ n = 10 \\ \bar{x} = \frac{15+17+10+18+16+9+7+11+13+14}{10} = 13 \\ s = \sqrt{ \frac{(15-13)^2 + (17-13)^2 + (10-13)^2 + (18-13)^2 + (16-13)^2 + (9-13)^2 + (7-13)^2 + (11-13)^2 + (13-13)^2 + (14-13)^2}{10-1} } \\ = \sqrt{ \frac{4 + 16 + 9 + 25 + 9 + 16 + 36 + 4 + 0 + 1}{9} } \\ = 3.651 \\ df = n-1 = 10 -1 = 9 \\ α = \frac{1-c}{2} = 0.025 \\ t_{α/2}= 2.26216c=0.95n=10xˉ=1015+17+10+18+16+9+7+11+13+14=13s=10−1(15−13)2+(17−13)2+(10−13)2+(18−13)2+(16−13)2+(9−13)2+(7−13)2+(11−13)2+(13−13)2+(14−13)2=94+16+9+25+9+16+36+4+0+1=3.651df=n−1=10−1=9α=21−c=0.025tα/2=2.26216
The margin of error is:
E=tα/2×sn=2.262×3.65110=2.6118E = t_{α/2} \times \frac{s}{\sqrt{n}} = 2.262 \times \frac{3.651}{\sqrt{10}} = 2.6118E=tα/2×ns=2.262×103.651=2.6118
The confidence interval:
xˉ−E<μ<xˉ+E10−2.61<μ<10+2.617.39<μ<12.61\bar{x} -E < μ < \bar{x} +E \\ 10 -2.61 < μ < 10 +2.61 \\ 7.39 < μ < 12.61xˉ−E<μ<xˉ+E10−2.61<μ<10+2.617.39<μ<12.61
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments