Assume the machine shifts and is filling the vials with a mean amount of 9.96 milligrams and a standard deviation of 0.05 milligram. You select five vials and find the mean amount of compound added.
"\u03bc = 9.96 \\\\\n\n\u03c3 = 0.05 \\\\\n\nn = 5"
Assumption: the acceptable range of the sample is within +/-1 of the standard deviation.
"P(\u03bc - \u03c3 < X <\u03bc + \u03c3 ) = P( \\frac{(\u03bc - \u03c3) - \u03bc }{\u03c3\/ \\sqrt{n}} < \\frac{X - \u03bc }{\u03c3\/ \\sqrt{n}}< \\frac{(\u03bc - \u03c3) - \u03bc }{\u03c3\/ \\sqrt{n}} )"
"P( 9.96 - 0.05 < X < 9.96 + 0.05) = P( \\frac{( 9.96 - 0.05 ) - 9.96 }{0.05\/ \\sqrt{5}} < \\frac{X - 9.96 }{0.05\/ \\sqrt{5}} < \\frac {( 9.96 + 0.05 ) - 9.96 }{0.05\/ \\sqrt{5}}) \\\\\n\n\nP( 9.995 < X < 9.965 ) = P( \\frac{-0.05}{0.05\/ \\sqrt{5}} < \\frac{X - 9.96 }{0.05\/ \\sqrt{5}} < \\frac{0.05 }{0.05\/ \\sqrt{5}} ) \\\\\n\n\nP( 9.995 < X < 9.965 ) = P( -0.4472 < t < 0.4472 ) \\\\\n\n\ndf = n-1 = 5-1 = 4 \\\\\n\n\nP( 9.995 < X < 9.965 ) = 2 \\times P( 0 < t < 0.4472 ) \\\\\n\n\nP( 9.995 < X < 9.965 ) = 2 \\times 0.1632 \\\\\n\n\nP( 9.995 < X < 9.965 ) = 0.3264"
Comments
Leave a comment