Question #177633

Assume the machine shifts and is filling the vials with a mean amount of 9.96 milligrams and a standard deviation of 0.05 milligram. You select five vials and find the mean amount of compound added.



1
Expert's answer
2021-04-13T09:42:22-0400

μ=9.96σ=0.05n=5μ = 9.96 \\ σ = 0.05 \\ n = 5

Assumption: the acceptable range of the sample is within +/-1 of the standard deviation.

P(μσ<X<μ+σ)=P((μσ)μσ/n<Xμσ/n<(μσ)μσ/n)P(μ - σ < X <μ + σ ) = P( \frac{(μ - σ) - μ }{σ/ \sqrt{n}} < \frac{X - μ }{σ/ \sqrt{n}}< \frac{(μ - σ) - μ }{σ/ \sqrt{n}} )


P(9.960.05<X<9.96+0.05)=P((9.960.05)9.960.05/5<X9.960.05/5<(9.96+0.05)9.960.05/5)P(9.995<X<9.965)=P(0.050.05/5<X9.960.05/5<0.050.05/5)P(9.995<X<9.965)=P(0.4472<t<0.4472)df=n1=51=4P(9.995<X<9.965)=2×P(0<t<0.4472)P(9.995<X<9.965)=2×0.1632P(9.995<X<9.965)=0.3264P( 9.96 - 0.05 < X < 9.96 + 0.05) = P( \frac{( 9.96 - 0.05 ) - 9.96 }{0.05/ \sqrt{5}} < \frac{X - 9.96 }{0.05/ \sqrt{5}} < \frac {( 9.96 + 0.05 ) - 9.96 }{0.05/ \sqrt{5}}) \\ P( 9.995 < X < 9.965 ) = P( \frac{-0.05}{0.05/ \sqrt{5}} < \frac{X - 9.96 }{0.05/ \sqrt{5}} < \frac{0.05 }{0.05/ \sqrt{5}} ) \\ P( 9.995 < X < 9.965 ) = P( -0.4472 < t < 0.4472 ) \\ df = n-1 = 5-1 = 4 \\ P( 9.995 < X < 9.965 ) = 2 \times P( 0 < t < 0.4472 ) \\ P( 9.995 < X < 9.965 ) = 2 \times 0.1632 \\ P( 9.995 < X < 9.965 ) = 0.3264


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS