Question #177544

1. A charity group raises funds by collecting waste paper. A skip-full will contain an 

amount, X, of other materials such as plastic bags and rubber bands. X may be regarded 

as a random variable with probability function

𝑓(𝑥) = {𝑘(𝑥 − 1)(4 − 𝑥) , 1 < 𝑥 < 4

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (All numerical values in this question are in units of 100kg,)

i )Show that 𝑘 =1/2.

 ii)Find the mean and the standard deviation of X.

3. A research was conducted in 2017 at the Tema Port to find the ages of cars imported into 

the country. According to the research, 10% of the cars imported were less than one-year￾old. Assuming this result holds true for the current period for all cars imported into the 

country.

Find the probability that in a random sample of 5 cars at the Tema Port

(i) exactly 3 are less than one-year-old.

(iii) none is less than one-year-old 

(iv) Find the mean and standard deviation of the distribution if a random 

 Sample of 200 cars were selected


1
Expert's answer
2021-04-09T11:06:14-0400

1.

i)


f(x)dx=14k(x1)(4x)dx\displaystyle\int_{-\infin}^{\infin}f(x)dx=\displaystyle\int_{1}^{4}k(x-1)(4-x)dx

=k[x33+5x224x]41=9k2=1=k[-\dfrac{x^3}{3}+\dfrac{5x^2}{2}-4x]\begin{matrix} 4\\ 1 \end{matrix}=\dfrac{9k}{2}=1

k=29k=\dfrac{2}{9}

f(x)={29(x1)(4x),1<x<4         0,otherwisef(x) = \begin{cases} \dfrac{2}{9}(x-1)(4-x), & 1<x<4 \\ \ \ \ \ \ \ \ \ \ 0, & otherwise \end{cases}

ii)


mean=E(X)=1429x(x1)(4x)dxmean=E(X)=\displaystyle\int_{1}^{4}\dfrac{2}{9}x(x-1)(4-x)dx

=29[x44+5x332x2]41=29(454)=52=2.5=\dfrac{2}{9}[-\dfrac{x^4}{4}+\dfrac{5x^3}{3}-2x^2]\begin{matrix} 4\\ 1 \end{matrix}=\dfrac{2}{9}(\dfrac{45}{4})=\dfrac{5}{2}=2.5

mean=250 kgmean=250\ kg


iii)


E(X2)=1429x2(x1)(4x)dxE(X^2)=\displaystyle\int_{1}^{4}\dfrac{2}{9}x^2(x-1)(4-x)dx

=29[x55+5x444x33]41=29(60320)=6710=6.7=\dfrac{2}{9}[-\dfrac{x^5}{5}+\dfrac{5x^4}{4}-\dfrac{4x^3}{3}]\begin{matrix} 4\\ 1 \end{matrix}=\dfrac{2}{9}(\dfrac{603}{20})=\dfrac{67}{10}=6.7

Var(X)=E(X2)(E(X))2Var(X)=E(X^2)-(E(X))^2

=6.7(2.5)2=0.45=6.7-(2.5)^2=0.45

standard deviation=Var(X)\text{standard deviation}=\sqrt{Var(X)}

=0.45=0.350.67082=\sqrt{0.45}=0.3\sqrt{5}\approx0.67082

standard deviation=67.082 kg\text{standard deviation}=67.082\ kg


3.

Let X=X= the number of imported cars less than one-year old: XBin(n,p).X\sim Bin(n,p).

Given n=200,p=0.1n=200, p=0.1

(i)

P(X=3)=(2003)(0.1)3(10.1)2003P(X=3)=\dbinom{200}{3}(0.1)^3(1-0.1)^{200-3}

=0.00000127=0.00000127

(iii)

P(X=0)=(2000)(0.1)0(10.1)2000=P(X=0)=\dbinom{200}{0}(0.1)^0(1-0.1)^{200-0}=

=0.9200=7×10100=0.9^{200}=7\times 10^{-10}\approx0

(iv)


E(X)=np=200(0.1)=20E(X)=np=200(0.1)=20

standard deviation=np(1p)\text{standard deviation}=\sqrt{np(1-p)}

=200(0.1)(10.1)=324.24=\sqrt{200(0.1)(1-0.1)}=3\sqrt{2}\approx4.24



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS