6(b) Based on the previous data, the probabilities of a batsman making various scores in
One Day Internationals are given below: (5)
Runs 10 20 30 50 60 70 100
Probability 0.01 0.20 0.15 0.30 0.12 0.2 0.02
Simulate the runs scored by the batsman in the next five One Day Internationals using
the following 25, 39, 65, 76, 12.
The distribution for the given data is-
Here, "\\bar{x}=\\dfrac{\\sum X}{n}=\\dfrac{340}{7}=48.57"
"\\bar{Y}=\\dfrac{\\sum Y}{n}=\\dfrac{1}{7}=0.1428"
Regression coefficient of y on x
"b_{yx}=\\dfrac{n\\sum XY-\\sum X\\sum Y}{n\\sum X^2-(\\sum X)^2}=\\dfrac{7\\times 46.8-340\\times 1}{7\\times (22400)-(340)^2}=\\dfrac{-12.4}{41200}=-0.0003"
Regression equation of y on x -
"y-\\bar{y}=b_{yx}(x-\\bar{x})\\\\\\Rightarrow y-0.1428=-0.0003(x-48.57)\\\\\\Rightarrow y=-0.0003x+0.128"
The probability when runs scored-
"25 \\text{ is } y=-0.0003(25)+0.128=0.1205\n\n\\\\[9pt]\n\n25 \\text{ is } y=-0.0003(39)+0.128=0.1163\n\n\\\\[9pt]\n\n25 \\text{ is } y=-0.0003(65)+0.128=0.1085\n\n\n\\\\[9pt]\n25 \\text{ is } y=-0.0003(76)+0.128=0.1052\n\n\\\\[9pt]\n\n25 \\text{ is } y=-0.0003(12)+0.128=0.1244"
Comments
Leave a comment