X ∼ N ( μ , σ 2 ) X\sim N(\mu, \sigma^2 ) X ∼ N ( μ , σ 2 )
Given μ = 150.3 , σ 2 = 25 \mu=150.3, \sigma^2=25 μ = 150.3 , σ 2 = 25
P ( X < 140.3 ) = P ( Z < 140.3 − 150.3 25 ) P(X<140.3)=P(Z<\dfrac{140.3-150.3}{\sqrt{25}}) P ( X < 140.3 ) = P ( Z < 25 140.3 − 150.3 )
= P ( Z < − 2 ) ≈ 0.022750 =P(Z<-2)\approx0.022750 = P ( Z < − 2 ) ≈ 0.022750
P ( X > 160.3 ) = 1 − P ( X ≤ 160.3 ) P(X>160.3)=1-P(X\leq 160.3) P ( X > 160.3 ) = 1 − P ( X ≤ 160.3 )
= 1 − P ( Z ≤ 160.3 − 150.3 25 ) = 1 − P ( Z ≤ 2 ) =1-P(Z\leq \dfrac{160.3-150.3}{\sqrt{25}})=1-P(Z\leq 2) = 1 − P ( Z ≤ 25 160.3 − 150.3 ) = 1 − P ( Z ≤ 2 )
≈ 0.022750 \approx0.022750 ≈ 0.022750
P ( d i f f e r e n c e > 10 ) P(difference>10) P ( d i ff ere n ce > 10 )
= P ( X < 140.30 ) + P ( X > 160.3 ) =P(X<140.30)+P(X>160.3) = P ( X < 140.30 ) + P ( X > 160.3 )
≈ 0.022750 + 0.022750 = 0.0455 \approx0.022750+0.022750=0.0455 ≈ 0.022750 + 0.022750 = 0.0455 Check
σ = 25 = 5 \sigma=\sqrt{25}=5 σ = 25 = 5
10 = 2 σ 10=2\sigma 10 = 2 σ
By the 68–95–99.7 rule
P ( μ − 2 σ ≤ X ≤ μ + 2 σ ) ≈ 0.9545 P(\mu-2\sigma\leq X\leq \mu+2\sigma)\approx0.9545 P ( μ − 2 σ ≤ X ≤ μ + 2 σ ) ≈ 0.9545
P ( d i f f e r e n c e > 10 ) ≈ 1 − 0.9545 = 0.0455 P(difference>10)\approx1-0.9545=0.0455 P ( d i ff ere n ce > 10 ) ≈ 1 − 0.9545 = 0.0455
Comments
So helpful. Thanks very much