Question #172620

If the number of flaws on a piece of plywood occurs randomly and follows the Poisson distribution with a mean of 1 per 5m^2

.

(a) Find the probability that a piece of randomly chosen plywood will contain no flaws.

(b) The plywood is sold in pieces of size 3m^2. Find the probability that the plywood will contain no flaws.


1
Expert's answer
2021-03-18T13:58:17-0400

Poisson’s formula:\text{Poisson's formula:}

P(X=m)=λmeλm!P(X=m)=\frac{\lambda^m{e^{-\lambda}}}{m!}

a) lets a piece of plywood has an area Sa)\text{ lets a piece of plywood has an area } S

then λ=S5\text{then }\lambda=\frac{S}{5}

P(0)the probability that the plywood does not contain flawsP(0) -\text{the probability that the plywood does not contain flaws}

P(0)=λ0eλ0!=eλ=eS5(1)P(0)=\frac{\lambda^0{e^{-\lambda}}}{0!}=e^{-\lambda}=e^{-\frac{S}{5}}(1)

b)we use the formula (1)b)\text{we use the formula (1)}

P(0)=e360.61P(0)= e^{-\frac{3}{6}}\approx0.61

Answer:

a)P(0)=eS5,where S area of a piece of plywoodb)P(0)=0.6a)P(0)=e^{-\frac{S}{5}},\text{where S area of a piece of plywood}\newline b)P(0)=0.6




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS