a)
Sample size N = 76. N=76. N = 76.
x ‾ = 1 N ∑ x i n i x i — value (Young’s modulus) n i — corresponding frequency s ‾ = 1 N ∑ ( x i − x ‾ ) 2 n i \overline{x}=\frac{1}{N}\sum x_in_i\\
x_i\text{ --- value (Young's modulus)}\\
n_i\text{ --- corresponding frequency}\\
\overline{s}=\sqrt{\frac{1}{N}\sum (x_i-\overline{x})^2n_i} x = N 1 ∑ x i n i x i — value (Young’s modulus) n i — corresponding frequency s = N 1 ∑ ( x i − x ) 2 n i
b)
Sample size N = 85. N=85. N = 85.
p n ‾ ( x ) = { l j N ⋅ h , x ∈ [ a + j h , a + ( j + 1 ) h ) 0 , x ∉ ( a , b ) l j — number of values in the interval [ a + j h , a + ( j + 1 ) h ) \overline{p_n}(x)=
\begin{cases}
\frac{l_j}{N\cdot h}, x\in [a+jh,a+(j+1)h)\\
0,\ x\notin (a,b)
\end{cases}\\
l_j\text{ --- number of values in the interval } [a+jh,a+(j+1)h) p n ( x ) = { N ⋅ h l j , x ∈ [ a + jh , a + ( j + 1 ) h ) 0 , x ∈ / ( a , b ) l j — number of values in the interval [ a + jh , a + ( j + 1 ) h )
h = 30 h=30 h = 30
x i ∗ = x i + x i − 1 2 s ‾ = 1 N ∑ ( x i ∗ ) 2 n i − ( 1 N ∑ x i ∗ n i ) 2 x ‾ = 1 N ∑ x i ∗ n i x_i^*=\frac{x_i+x_{i-1}}{2}\\
\overline{s}=\sqrt{\frac{1}{N}\sum(x_i^*)^2n_i-(\frac{1}{N}\sum x_i^*n_i)^2}\\
\overline{x}=\frac{1}{N}\sum x_i^*n_i x i ∗ = 2 x i + x i − 1 s = N 1 ∑ ( x i ∗ ) 2 n i − ( N 1 ∑ x i ∗ n i ) 2 x = N 1 ∑ x i ∗ n i
Comments