Question #172636

A roulette wheel is constructed in such a way that the numbers from 1 to 10 can fall into it and the probability of dropping a number (k + 1) is 2 times greater than dropping the number k (for k = 1; 2; 3; ... 9). Find the probability that: a falls the number 1; b to drop the number 10. Give the ending as a decimal number rounded to 3 digits after the decimal point.


1
Expert's answer
2021-03-26T08:36:14-0400

Let X be our random variable (the number that falls).x — probability that the number 1 falls2x — probability that the number 2 falls4x — probability that the number 3 fallsx+2x+4x+=1The left side is the sum of the geometric progression with n=10, q=2, b1=1.Sn=b1(1qn)1q=1(1210)12=1023.1023x=1x=110230.001.\text{Let }X\text{ be our random variable (the number that falls)}.\\ x\text{ --- probability that the number 1 falls}\\ 2x\text{ --- probability that the number 2 falls}\\ 4x\text{ --- probability that the number 3 falls}\\ x+2x+4x+\ldots=1\\ \text{The left side is the sum of the geometric progression with }n=10,\ q=2,\ b_1=1.\\ S_{n}=\frac{b_1(1-q^n)}{1-q}=\frac{1(1-2^{10})}{1-2}=1023.\\ 1023x=1\\ x=\frac{1}{1023}\approx 0.001.

a. So the probability that the number 1 falls is 0.0010.001.



The probability that the number 2 falls is 210230.002.\frac{2}{1023}\approx 0.002.

b10=b1q9=129=512.b_{10}=b_1q^9=1\cdot 2^9=512.

b. The probability that the number 10 falls is 51210230.500.\frac{512}{1023}\approx 0.500.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS