A roulette wheel is constructed in such a way that the numbers can fall from 1 to 100 and the probability of a humerus falling (k + 1) is 2 times greater than a numerical drop (for k = 1; 2; 3 ; ... 9). Find the probability that: a falls the number 1; b to drop the number 10. Give the ending as a decimal number rounded to 3 digits after the decimal point.
"\\Sigma_{i=1}^{100}p_i=1,\\text{where }p_i \\text{probability of getting a number } i"
"\\Sigma_{i=1}^{100}p_i=\\Sigma_{i=1}^{10}p_i+\\Sigma_{i=11}^{100}p_i"
"\\Sigma_{i=11}^{100}p_i=0.9"
"\\Sigma_{i=1}^{10}p_i=0.1\\text{ where }p_i=p_{i-1}*2"
"\\Sigma_{i=1}^{10}p_i=\\Sigma_{i=1}^{10}p_1*2^{i-1}=p_1*\\Sigma_{i=1}^{10}2^{i-1}=1023*p_1"
"p_1=\\frac{0.1}{1023}\\approx0"
"p_{10}=512*p_1=\\frac{512}{1023}*0.1\\approx0.05"
Answer: "p_1=0;p_{10} =0.05 \\text{ rounded to 3 digits after the decimal point.}"
Comments
Leave a comment