Question #168841

Construct the probability distribution and find the mean, variance and standard deviation of the following situation.


1. A group of friends is composed of 5 boys and 4 girls. You like to be off friend to 4 of them. The random variable T gives the number of girlfriends you can have.


1
Expert's answer
2021-03-05T07:28:28-0500

The probability of having 0 girlfriends:


p(0)=C54C94=5!4!1!4!5!9!=52346789=5729=5126p(0) = \frac{{C_5^4}}{{C_9^4}} = \frac{{5!}}{{4!1!}} \cdot \frac{{4!5!}}{{9!}} = 5 \cdot \frac{{2 \cdot 3 \cdot 4}}{{6 \cdot 7 \cdot 8 \cdot 9}} = \frac{5}{{7 \cdot 2 \cdot 9}} = \frac{5}{{126}}


The probability of having 1 girlfriend:


p(1)=C53C41C94=5!3!2!4!3!1!4!5!9!=45242346789=40729=2063p(1) = \frac{{C_5^3C_4^1}}{{C_9^4}} = \frac{{5!}}{{3!2!}} \cdot \frac{{4!}}{{3!1!}} \cdot \frac{{4!5!}}{{9!}} = \frac{{4 \cdot 5}}{2} \cdot 4 \cdot \frac{{2 \cdot 3 \cdot 4}}{{6 \cdot 7 \cdot 8 \cdot 9}} = \frac{{40}}{{7 \cdot 2 \cdot 9}} = \frac{{20}}{{63}}


The probability of having 2 girlfriends:


p(2)=C52C42C94=5!3!2!4!2!2!4!5!9!=4523422346789=60729=3063p(2) = \frac{{C_5^2C_4^2}}{{C_9^4}} = \frac{{5!}}{{3!2!}} \cdot \frac{{4!}}{{2!2!}} \cdot \frac{{4!5!}}{{9!}} = \frac{{4 \cdot 5}}{2} \cdot \frac{{3 \cdot 4}}{2} \cdot \frac{{2 \cdot 3 \cdot 4}}{{6 \cdot 7 \cdot 8 \cdot 9}} = \frac{{60}}{{7 \cdot 2 \cdot 9}} = \frac{{30}}{{63}}


The probability of having 3 girlfriends:


p(3)=C51C43C94=5!1!4!4!3!1!4!5!9!=542346789=20729=1063p(3) = \frac{{C_5^1C_4^3}}{{C_9^4}} = \frac{{5!}}{{1!4!}} \cdot \frac{{4!}}{{3!1!}} \cdot \frac{{4!5!}}{{9!}} = 5 \cdot 4 \cdot \frac{{2 \cdot 3 \cdot 4}}{{6 \cdot 7 \cdot 8 \cdot 9}} = \frac{{20}}{{7 \cdot 2 \cdot 9}} = \frac{{10}}{{63}}


The probability of having 4 girlfriends:


p(4)=C44C94=4!5!9!=2346789=1729=1126p(4) = \frac{{C_4^4}}{{C_9^4}} = \frac{{4!5!}}{{9!}} = \frac{{2 \cdot 3 \cdot 4}}{{6 \cdot 7 \cdot 8 \cdot 9}} = \frac{1}{{7 \cdot 2 \cdot 9}} = \frac{1}{{126}}


We have the probability distribution:


T01234p51262063306310631126\begin{matrix} T&0&1&2&3&4\\ p&{\frac{5}{{126}}}&{\frac{{20}}{{63}}}&{\frac{{30}}{{63}}}&{\frac{{10}}{{63}}}&{\frac{1}{{126}}} \end{matrix}


Find the mean:


M(T)=tipi=05126+12063+23063+31063+41126=11263=169M(T) = \sum {{t_i}} {p_i} = 0 \cdot \frac{5}{{126}} + 1 \cdot \frac{{20}}{{63}} + 2 \cdot \frac{{30}}{{63}} + 3 \cdot \frac{{10}}{{63}} + 4 \cdot \frac{1}{{126}} = \frac{{112}}{{63}} = \frac{{16}}{9}


Find the variance:


D(T)=M(T2)M2(T)=05126+12063+43063+91063+161126(169)2=D(T) = M({T^2}) - {M^2}(T) = 0 \cdot \frac{5}{{126}} + 1 \cdot \frac{{20}}{{63}} + 4 \cdot \frac{{30}}{{63}} + 9 \cdot \frac{{10}}{{63}} + 16 \cdot \frac{1}{{126}} - {\left( {\frac{{16}}{9}} \right)^2} =

=2386325681=5081= \frac{{238}}{{63}} - \frac{{256}}{{81}} = \frac{{50}}{{81}}


Find the standard deviation:


σ(T)=D(T)=5081=529\sigma (T) = \sqrt {D(T)} = \sqrt {\frac{{50}}{{81}}} = \frac{{5\sqrt 2 }}{9}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS