Construct the probability distribution and find the mean, variance and standard deviation of the following situation.
1. A group of friends is composed of 5 boys and 4 girls. You like to be off friend to 4 of them. The random variable T gives the number of girlfriends you can have.
The probability of having 0 girlfriends:
"p(0) = \\frac{{C_5^4}}{{C_9^4}} = \\frac{{5!}}{{4!1!}} \\cdot \\frac{{4!5!}}{{9!}} = 5 \\cdot \\frac{{2 \\cdot 3 \\cdot 4}}{{6 \\cdot 7 \\cdot 8 \\cdot 9}} = \\frac{5}{{7 \\cdot 2 \\cdot 9}} = \\frac{5}{{126}}"
The probability of having 1 girlfriend:
"p(1) = \\frac{{C_5^3C_4^1}}{{C_9^4}} = \\frac{{5!}}{{3!2!}} \\cdot \\frac{{4!}}{{3!1!}} \\cdot \\frac{{4!5!}}{{9!}} = \\frac{{4 \\cdot 5}}{2} \\cdot 4 \\cdot \\frac{{2 \\cdot 3 \\cdot 4}}{{6 \\cdot 7 \\cdot 8 \\cdot 9}} = \\frac{{40}}{{7 \\cdot 2 \\cdot 9}} = \\frac{{20}}{{63}}"
The probability of having 2 girlfriends:
"p(2) = \\frac{{C_5^2C_4^2}}{{C_9^4}} = \\frac{{5!}}{{3!2!}} \\cdot \\frac{{4!}}{{2!2!}} \\cdot \\frac{{4!5!}}{{9!}} = \\frac{{4 \\cdot 5}}{2} \\cdot \\frac{{3 \\cdot 4}}{2} \\cdot \\frac{{2 \\cdot 3 \\cdot 4}}{{6 \\cdot 7 \\cdot 8 \\cdot 9}} = \\frac{{60}}{{7 \\cdot 2 \\cdot 9}} = \\frac{{30}}{{63}}"
The probability of having 3 girlfriends:
"p(3) = \\frac{{C_5^1C_4^3}}{{C_9^4}} = \\frac{{5!}}{{1!4!}} \\cdot \\frac{{4!}}{{3!1!}} \\cdot \\frac{{4!5!}}{{9!}} = 5 \\cdot 4 \\cdot \\frac{{2 \\cdot 3 \\cdot 4}}{{6 \\cdot 7 \\cdot 8 \\cdot 9}} = \\frac{{20}}{{7 \\cdot 2 \\cdot 9}} = \\frac{{10}}{{63}}"
The probability of having 4 girlfriends:
"p(4) = \\frac{{C_4^4}}{{C_9^4}} = \\frac{{4!5!}}{{9!}} = \\frac{{2 \\cdot 3 \\cdot 4}}{{6 \\cdot 7 \\cdot 8 \\cdot 9}} = \\frac{1}{{7 \\cdot 2 \\cdot 9}} = \\frac{1}{{126}}"
We have the probability distribution:
"\\begin{matrix}\nT&0&1&2&3&4\\\\\np&{\\frac{5}{{126}}}&{\\frac{{20}}{{63}}}&{\\frac{{30}}{{63}}}&{\\frac{{10}}{{63}}}&{\\frac{1}{{126}}}\n\\end{matrix}"
Find the mean:
"M(T) = \\sum {{t_i}} {p_i} = 0 \\cdot \\frac{5}{{126}} + 1 \\cdot \\frac{{20}}{{63}} + 2 \\cdot \\frac{{30}}{{63}} + 3 \\cdot \\frac{{10}}{{63}} + 4 \\cdot \\frac{1}{{126}} = \\frac{{112}}{{63}} = \\frac{{16}}{9}"
Find the variance:
"D(T) = M({T^2}) - {M^2}(T) = 0 \\cdot \\frac{5}{{126}} + 1 \\cdot \\frac{{20}}{{63}} + 4 \\cdot \\frac{{30}}{{63}} + 9 \\cdot \\frac{{10}}{{63}} + 16 \\cdot \\frac{1}{{126}} - {\\left( {\\frac{{16}}{9}} \\right)^2} ="
"= \\frac{{238}}{{63}} - \\frac{{256}}{{81}} = \\frac{{50}}{{81}}"
Find the standard deviation:
"\\sigma (T) = \\sqrt {D(T)} = \\sqrt {\\frac{{50}}{{81}}} = \\frac{{5\\sqrt 2 }}{9}"
Comments
Leave a comment