n=15p=0.45q=1−p=1−0.45=0.55
(a) According to Bernoulli's formula:
P(X=4)=C154p4q15−4=4!×11!15!×0.454×0.5511=0.07798
(b)
P(X>10)=1−[P(X=0)+P(X=1)+P(X=2)+P(X=3)+P(X=4)+P(X=5)+P(X=6)+P(X=7)+P(X=8)+P(X=9)]P(X=0)=0!×15!15!×0.450×0.5515=0.00012P(X=1)=1!×14!15!×0.451×0.5514=0.00156P(X=2)=2!×13!15!×0.452×0.5513=0.00896P(X=3)=3!×12!15!×0.453×0.5512=0.03176P(X=4)=0.07798P(X=5)=5!×10!15!×0.455×0.5510=0.14036P(X=6)=6!×9!15!×0.456×0.559=0.19140P(X=7)=7!×8!15!×0.457×0.558=0.20134P(X=8)=8!×7!15!×0.458×0.557=0.16473P(X=9)=9!×6!15!×0.459×0.556=0.10483P(X>10)=1−(0.00012+0.00156+0.00896+0.03176+0.07798+0.14036+0.19140+0.20134+0.16473+0.10483)=1−0.92304=0.07696
Comments