A shipment of 7 television sets contains 2 defective sets. A hotel makes a random purchase of 3 of the sets. If x is the number of defective sets purchased by the hotel, find the probability distribution of X. Express the results graphically as a probability histogram.
The probability that there will be 0 defective sets:
"p(0) = \\frac{{C_5^3}}{{C_7^3}} = \\frac{{5!}}{{3!2!}} \\cdot \\frac{{3!4!}}{{7!}} = \\frac{{3 \\cdot 4 \\cdot 5}}{{5 \\cdot 6 \\cdot 7}} = \\frac{2}{7}"
1 defective sets:
"p(1) = \\frac{{C_5^2C_2^1}}{{C_7^3}} = 2 \\cdot \\frac{{5!}}{{3!2!}} \\cdot \\frac{{3!4!}}{{7!}} = 2 \\cdot \\frac{{3 \\cdot 4 \\cdot 5}}{{5 \\cdot 6 \\cdot 7}} = \\frac{4}{7}"
2 defective sets:
"p(2) = \\frac{{C_5^1C_2^2}}{{C_7^3}} = 5 \\cdot \\frac{{3!4!}}{{7!}} = 5 \\cdot \\frac{6}{{5 \\cdot 6 \\cdot 7}} = \\frac{1}{7}"
We have the probability distribution:
"\\begin{matrix}\nX&0&1&2\\\\\np&{\\frac{2}{7}}&{\\frac{4}{7}}&{\\frac{1}{7}}\n\\end{matrix}"
Probability histogram:
Comments
Leave a comment