Question #168664

A  shipment  of  7  television  sets  contains  2  defective  sets.   A  hotel  makes  a  random purchase of 3 of the sets.  If x is the number of defective sets purchased by the hotel, find the probability distribution of X.  Express the results graphically as a probability histogram.


1
Expert's answer
2021-03-05T00:53:55-0500

The probability that there will be 0 defective sets:

p(0)=C53C73=5!3!2!3!4!7!=345567=27p(0) = \frac{{C_5^3}}{{C_7^3}} = \frac{{5!}}{{3!2!}} \cdot \frac{{3!4!}}{{7!}} = \frac{{3 \cdot 4 \cdot 5}}{{5 \cdot 6 \cdot 7}} = \frac{2}{7}

1 defective sets:

p(1)=C52C21C73=25!3!2!3!4!7!=2345567=47p(1) = \frac{{C_5^2C_2^1}}{{C_7^3}} = 2 \cdot \frac{{5!}}{{3!2!}} \cdot \frac{{3!4!}}{{7!}} = 2 \cdot \frac{{3 \cdot 4 \cdot 5}}{{5 \cdot 6 \cdot 7}} = \frac{4}{7}

2 defective sets:

p(2)=C51C22C73=53!4!7!=56567=17p(2) = \frac{{C_5^1C_2^2}}{{C_7^3}} = 5 \cdot \frac{{3!4!}}{{7!}} = 5 \cdot \frac{6}{{5 \cdot 6 \cdot 7}} = \frac{1}{7}

We have  the probability distribution:

X012p274717\begin{matrix} X&0&1&2\\ p&{\frac{2}{7}}&{\frac{4}{7}}&{\frac{1}{7}} \end{matrix}

 Probability histogram:


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS