Find the variance and standard deviation of the probability distribution of the random variable X, which can take only the values 3,5, and 7, given that P (3) = (7)/(30),P(5) = (1)/(3),P(7) = (13)/(30)
In order to find the variance ( "\\sigma^2" ) of the given distribution, we will use the following formula:
"\\sigma^2=\\sum x^2\\times p(x)-\\mu^2"
In this example:
"\\mu=\\frac{27}{5}"
Now we will find the sum:
"\\sum x^2\\times p(x) = 3^2\\times\\frac{7}{30}+5^2\\times\\frac{1}{3}+7^2\\times\\frac{13}{30} = \\frac{95}{3}"
Putting all together we have:
"\\sigma^2=\\sum x^2\\times p(x)-\\mu^2 = \\frac{95}{3} - (\\frac{27}{5})^2 = \\frac{188}{75}"
Standard deviation: "\\sigma = \\sqrt{\\sigma^2} = \\sqrt{\\frac{188}{75}} = 1.5832"
Comments
Leave a comment