1. Attendance at Orlando’s newest Disneylike attraction, Lego World, has been as follow:
QUARTER
GUEST (IN THOUSADS)
QUARTER
GUEST (IN THOUSADS)
Winter Year 1
73
Summer Year 2
124
Spring Year 1
104
Fall Year 2
52
Summer Year 1
168
Winter Year 3
89
Fall Year 1
74
Spring Year 3
146
Winter Year 2
65
Summer Year 3
205
Spring Year 2
82
Fall Year 3
98
a) Compute the Seasonal Indices using all the data.
b) If the expected guest for the next year (i.e., Forth Year) is 550000, forecast the quarterly attendance for the year 4?
a)
"\\begin{matrix}\n \nQuarter & Year1& Year2 & Year3 \\\\\n Winter & 73 & 65 & 89 \\\\\nSpring & 104 & 82 & 146 \\\\\nSummer & 168 & 124 & 205\\\\\nFall & 74 & 52 & 98\n\\end{matrix}"
"Average\\ Demand=\\dfrac{73+65+89}{3}=\\dfrac{227}{3}=75.67"
"Average\\ Demand=\\dfrac{104+82+146}{3}=\\dfrac{332}{3}=110.67"
"Average\\ Demand=\\dfrac{168+124+205}{3}=\\dfrac{497}{3}=165.67"
"Average\\ Demand=\\dfrac{74+52+98}{3}=\\dfrac{224}{3}=74.67"
"Total \\ Average \\ annual\\ demand"
"=\\dfrac{227+332+497+224}{3}=\\dfrac{1280}{3}=426.67"
"Total \\ Average \\ quaterly\\ demand"
"\\dfrac{1280}{3(4)}=\\dfrac{320}{3}=106.67"
"Seasonal \\ index =\\dfrac{\\dfrac{332}{3}}{\\dfrac{320}{3}}=\\dfrac{332}{320}=1.037500"
"Seasonal \\ index =\\dfrac{\\dfrac{497}{3}}{\\dfrac{320}{3}}=\\dfrac{497}{320}=1.553125"
"Seasonal \\ index =\\dfrac{\\dfrac{224}{3}}{\\dfrac{320}{3}}=\\dfrac{224}{320}=0.700000"
"\\begin{matrix}\n \nQuarter & Seasonal \\ index\\\\\n Winter & 0.709375 \\\\\nSpring & 1.037500 \\\\\nSummer & 1.553125 \\\\\nFall & 0.700000\n\\end{matrix}"
b)
"Spring=\\dfrac{550}{4}\\times 1.037500=142.656(thousands)"
"Summer=\\dfrac{550}{4}\\times 1.553125=213.555 (thousands)"
"Fall=\\dfrac{550}{4}\\times 0.700000=96.250 (thousands)"
Comments
Leave a comment