Question #153380

Consider the following probability density function:

fX(x)=kx 0<=x<2,

=k(4-x), 2<=x<=4

=0, otherwise


a)   Find the value of k for which fX(x) is a valid probability density function.

b)  Find the mean of X.

c)   Find and skecth the probability distiribution function FX(x).

1
Expert's answer
2021-01-05T14:31:55-0500

CORRECTED SOLUTION.

1) 1=04f(x)dx=02kxdx+24k(4x)dx=\int_0^4 f(x)dx = \int_0^2 kx dx + \int_2^4 k(4-x)dx =

=kx2202+(4kxkx22)24=4k= \frac{ kx^2}{2}|_0^2 + (4kx- \frac{kx^2}{2})|_2^4 = 4k

Therefore, k=1/4.


2) E[X] = 04xf(x)dx=02x24dx+24x(4x)4dx=\int_0^4 xf(x)dx = \int_0^2 \frac{x^2}{4} dx + \int_2^4 \frac{x(4-x)}{4} dx =

=x31202+(x22x312)24== \frac{x^3}{12}|_0^2 + (\frac{x^2}{2} - \frac{x^3}{12})|_2^4 = (8/12 - 0/12) + (16/2 - 64/12) - (4/2 - 8/12) = 2


3) FX(x)=0xf(t)dtF_X(x) = \int_0^x f(t)dt

If 0x20\leq x\leq 2, then FX(x)=0xt/4dt=t280x=x2/8F_X(x) = \int_0^x t/4dt = \frac{t^2}{8}|_0^x = x^2/8

In particurlarly, FX(2) = 22/8 = 1/2.

If 2x42\leq x\leq 4, then FX(x)=FX(2)+2x(4t)/4dt=1/2+(tt28)2x=F_X(x) = F_X(2) +\int_2^x (4-t)/4dt = 1/2 + (t-\frac{t^2}{8})|_2^x =

= 1/2 + (x - x2/8) - (2 - 22/8) = - x2/8 + x - 1.


The graph of the probability distiribution function FX(x):

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS