CORRECTED SOLUTION.
1) 1=∫04f(x)dx=∫02kxdx+∫24k(4−x)dx=
=2kx2∣02+(4kx−2kx2)∣24=4k
Therefore, k=1/4.
2) E[X] = ∫04xf(x)dx=∫024x2dx+∫244x(4−x)dx=
=12x3∣02+(2x2−12x3)∣24= (8/12 - 0/12) + (16/2 - 64/12) - (4/2 - 8/12) = 2
3) FX(x)=∫0xf(t)dt
If 0≤x≤2, then FX(x)=∫0xt/4dt=8t2∣0x=x2/8
In particurlarly, FX(2) = 22/8 = 1/2.
If 2≤x≤4, then FX(x)=FX(2)+∫2x(4−t)/4dt=1/2+(t−8t2)∣2x=
= 1/2 + (x - x2/8) - (2 - 22/8) = - x2/8 + x - 1.
The graph of the probability distiribution function FX(x):
Comments