AB and CD are two lines of length 10 cm. and 5 cm. respectively.
We choose point P on line AB and point Q on line CD at random.
Length of CQ=X and length of AP=Y are two independent random variable
a) P(Y > X)=?
b) P( X=2. Y=2)=?
PX(x)=1/5 for 0"\\le X \\le 5"
PY(y)=1/10 for 0"\\le Y \\le 10"
P(Y > X)="\\int_{x=0}^{5} \\int_{y=x}^{10} P_X(x)*P_Y(y) dydx= \\int_{x=0}^{5} \\int_{y=x}^{10} 1\/50 dydx="
"\\int_{x=0}^{5} (10-x)\/50*dx=-1\/50*\\int_0^5x*dx+1\/5\\int_0^51*dx=-5^2\/100+5\/5=3\/4"
P( X=2 and Y=2) = P(X=2)*P(Y=2) = "(\\int_2^{2} 1\/5*dx)*(\\int_2^{2} 1\/10*dy)=0"
Comments
Leave a comment