Question #153375

For 80% of lectures, Professor John Smith arrives on time and starts lecturing with delay T. When Professor is late, the starting time delay T is uniformly distributed between 0 and 300 seconds. Find the probability distiribution and probability density function of random variable T.



1
Expert's answer
2021-01-04T18:58:28-0500

For continuous uniform distribution probability density function will be:

f(T)={1/(ba)for aTb0for T<a or T>bf(T) = \begin{cases} 1/(b-a) &\text{for } a\le T\le b \\ 0 &\text{for T<a or T>b} \end{cases}

f(T)={1/300for 0T3000for T>300f(T) = \begin{cases} 1/300 &\text{for } 0\le T\le 300 \\ 0 &\text{for } T>300 \end{cases}

Let's describe probability distribution:

P(0\leT\le100) = 01001/300dx=100/300=1/3\int_0^{100}1/300 dx=100/300=1/3

P(100\leT\le200) =1002001/300dx=(200100)/300=1/3\int_{100}^{200}1/300 dx=(200-100)/300=1/3

P(200\leT\le300) = 2003001/300dx=(300200)/300=1/3\int_{200}^{300}1/300 dx=(300-200)/300=1/3

P(T>300) = 0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS