For 80% of lectures, Professor John Smith arrives on time and starts lecturing with delay T. When Professor is late, the starting time delay T is uniformly distributed between 0 and 300 seconds. Find the probability distiribution and probability density function of random variable T.
For continuous uniform distribution probability density function will be:
"f(T) = \\begin{cases}\n 1\/(b-a) &\\text{for } a\\le T\\le b \\\\\n 0 &\\text{for T<a or T>b} \n\\end{cases}"
"f(T) = \\begin{cases}\n 1\/300 &\\text{for } 0\\le T\\le 300 \\\\\n 0 &\\text{for } T>300\n\\end{cases}"
Let's describe probability distribution:
P(0"\\le"T"\\le"100) = "\\int_0^{100}1\/300 dx=100\/300=1\/3"
P(100"\\le"T"\\le"200) ="\\int_{100}^{200}1\/300 dx=(200-100)\/300=1\/3"
P(200"\\le"T"\\le"300) = "\\int_{200}^{300}1\/300 dx=(300-200)\/300=1\/3"
P(T>300) = 0
Comments
Leave a comment