Question #153378

Probability density function of random variable X is given as:

f(x)=0.4&*(x+4)+0.2[u(x+3)-u(x+2)]+A*e^(-x)*u(x)

where u(x) is the unit step function.

a) Find and sketch probability distribution function FX(x).

b) Calculate the following probabilities.

P(X=3)

P(-4 ≤ X < -2)

P(-4 < X < -2)

P(X >-4)

P(X < 0)

1
Expert's answer
2021-01-01T15:39:51-0500

a)

f(x)=0.4e(x+4)u(x+4)f(x)=0.4e^{-(x+4)}u(x+4)+0.2(u(x+3)u(x+2))+Aexu(x)+0.2(u(x+3)-u(x+2))+Ae^{-x}u(x)

where u(x)u(x) is the unit step function.


f(x)dx=1\displaystyle\int_{-\infin}^\infin f(x)dx=1

40.4e(x+4)dx+0.2(1)+0Aexdx=1\displaystyle\int_{-4}^\infin 0.4e^{-(x+4)}dx+0.2(1)+\displaystyle\int_{0}^\infin Ae^{-x}dx=1

0.4(1)+0.2+A(1)=10.4(1)+0.2+A(1)=1

A=0.4A=0.4

f(x)=0.4e(x+4)u(x+4)f(x)=0.4e^{-(x+4)}u(x+4)+0.2(u(x+3)u(x+2))+0.4exu(x)+0.2(u(x+3)-u(x+2))+0.4e^{-x}u(x)

where u(x)u(x) is the unit step function.


FX(x)={0x<40.4(1ex4)4x<30.4(1ex4)+0.2(x+3)3x<20.4(1ex4)+0.22x<00.4(1ex4)+0.2+0.4(1ex)x0F_X(x)=\begin{cases} 0 & x<-4 \\ 0.4(1-e^{-x-4}) &-4\leq x<-3 \\ 0.4(1-e^{-x-4})+0.2(x+3) & -3\leq x<-2 \\ 0.4(1-e^{-x-4})+0.2 & -2\leq x<0 \\ 0.4(1-e^{-x-4})+0.2+0.4(1-e^{-x}) & x\geq0\\ \end{cases}



b)


P(X=3)=0P(X=3)=0



P(4X<2)=F(2)F(4)P(-4\leq X<-2)=F(-2)-F(-4)

=0.4(1e(2)4)+0.20=0.6e2=0.4(1-e^{-(-2)-4})+0.2-0=0.6-e^{-2}



P(4<X<2)=P(4X<2)=0.6e2P(-4< X<-2)=P(-4\leq X<-2)=0.6-e^{-2}



P(X>4)=1P(X>-4)=1



P(X<0)=F(0)=0.6e4P(X<0)=F(0)=0.6-e^{-4}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS