Probability density function of random variable X is given as:
"f(x)=0.4&*(x+4)+0.2[u(x+3)-u(x+2)]+A*e^(-x)*u(x)"
where u(x) is the unit step function.
a) Find and sketch probability distribution function FX(x).
b) Calculate the following probabilities.
P(X=3)
P(-4 ≤ X < -2)
P(-4 < X < -2)
P(X >-4)
P(X < 0)
a)
"f(x)=0.4e^{-(x+4)}u(x+4)""+0.2(u(x+3)-u(x+2))+Ae^{-x}u(x)"where "u(x)" is the unit step function.
"\\displaystyle\\int_{-4}^\\infin 0.4e^{-(x+4)}dx+0.2(1)+\\displaystyle\\int_{0}^\\infin Ae^{-x}dx=1"
"0.4(1)+0.2+A(1)=1"
"A=0.4"
"f(x)=0.4e^{-(x+4)}u(x+4)""+0.2(u(x+3)-u(x+2))+0.4e^{-x}u(x)"
where "u(x)" is the unit step function.
"F_X(x)=\\begin{cases}\n 0 & x<-4 \\\\\n 0.4(1-e^{-x-4}) &-4\\leq x<-3 \\\\\n 0.4(1-e^{-x-4})+0.2(x+3) & -3\\leq x<-2 \\\\\n 0.4(1-e^{-x-4})+0.2 & -2\\leq x<0 \\\\\n 0.4(1-e^{-x-4})+0.2+0.4(1-e^{-x}) & x\\geq0\\\\\n\\end{cases}"
b)
"=0.4(1-e^{-(-2)-4})+0.2-0=0.6-e^{-2}"
Comments
Leave a comment