Mean =19.5, sd=3.5
Let X be a random variable denoting the number of hours on smartphone.
a)P(X>15)
Z="\\frac {X-\\mu} {SD}"
"=\\frac{15-19.5}{3.5}" =-1.29
P(z>-1.29)=0.90147 from the standard normal tables.
=0.90147
b)n=12, p(X>20)
"Z=\\frac {X-\\mu}{\\frac {SD} {\\sqrt{n}}}"
="\\frac{20-19.5}{\\frac{3.5}{\\sqrt{12}}}" =0.5
P(z>0.5)=0.30854 from the standard normal table.
=0.30854
c) 36th percentile.
"\\Phi ^{-1}(0.36)=-0.35"
"-0.35=\\frac{X-19.5}{3.5}"
X=18.275
Comments
Leave a comment