μ = 2100
σ = 600
"Z = \\frac{\\bar{X}-\u03bc}{\\frac{\u03c3}{\\sqrt{n}}} \\\\\n\n(a)\\; P(\\bar{X}>2000) = P(Z> \\frac{2000 \u2013 2100}{\\frac{600}{\\sqrt{6}}}) \\\\\n\n= P(Z>-0.41) \\\\\n\n= 0.6591 \\\\\n\n(b) \\;Z = \\frac{X-\u03bc}{\u03c3} \\\\\n\nP(X>1500) = P(Z>\\frac{1500-2100}{600}) \\\\\n\n= P(Z>-2.45) \\\\\n\n= 0.9929"
Expected number of boxes "= 10000 \\times 0.9929"
"= 9929 \\\\\n\n(c) \\;P(1700<X<2800) = P(\\frac{1700-2100}{600}<Z< \\frac{2800-2100}{600}) \\\\\n\n= P(-1.63 <Z<2.86) \\\\\n\n= 0.9463 \\\\"
(d) P = 25 % + 10 % = 35 %
Z-score = -0.383
"Z = \\frac{X-\u03bc}{\u03c3} \\\\\n\n-0.383 = \\frac{X-2100}{600} \\\\\n\nX = 1870"
(e)(f) no histogram
(e)(f) no histogram
Comments
Leave a comment