"\\text {Let k is a constant, then}\\\\\n\nf(t)=k[(t+10)-2]=k(t+8), 0<t<40\\\\\n\nk\\int _0^{40}(t+8)dt=1\\\\\n\nk\\left[\\frac{t^2}{2}+8t\\right]^{40}_0=1\\\\\n\nk[\\frac{40^2}{2}+8(40)]=1\\\\\n\nk(1120)=1\\\\\n\n\\therefore k=\\frac{1}{1120}\\\\\n\nP(t<10)=\\frac{1}{1120}\\int _0^{10}(t+8)dt\\\\\n\n=\\frac{1}{1120}\\left[\\frac{t^2}{2}+8t\\right]^{10}_0\\\\\n\n=\\frac{1}{1120}[\\frac{10^2}{2}+8(10)]\\\\\n\n=\\frac{1}{1120}\\times 130\\\\\n\n=\\frac{13}{112}"
Comments
Leave a comment