a) sample mean
"\\bar x =\\frac{{\\sum_{i=1}^n} x_i} {n}"
"=\\frac{90+106+97+88+102+94}{6}"
=96.1667
b) sample variance
"S^2=\\frac {\\sum_{i=1}^n( {x_i-\\bar x})^2 } {n-1}"
"=\\frac {(90-96.1667)^2+(106-96.1667) ^2+...+(94-96.1667)^2}{6-1}" =48.1667
c) estimated population variance
"\\sigma ^2 =\\frac{n-1} {n}s^2"
="\\frac{5}{6}*48.1667"
=40.138
d) The estimated population Variance is lower than the sample Variance.
Comments
Leave a comment