"H_0: \\sigma_A^2=\\sigma_B^2, H_1:\\sigma_A^2\\neq \\sigma_B^2\\\\\n\\alpha=0.05\\\\\n\\text{We will use the following criterion:}\\\\\nF=\\frac{S_b^2}{S_{sm}^2}\\text{ where } S_b^2, S_{sm}^2\\text{ are bigger and smaller sample}\\\\\n\\text{variances respectively}.\\\\\nF=\\frac{(0.032)^2}{(0.024)^2}\\approx 1.78.\\\\\nk_1=5-1=4\\\\\nk_2=6-1=5\\\\\nF_{critical_{right}}=F_{critical}(\\alpha\/2;k_1;k_2)=F_{critical}(0.025;4;5)\\approx 7.3879.\\\\\nF<F_{critical_{right}}.\\text{ So we accept } H_0.\\\\\n\\text{There is no evidence that population variances are not equal}."
2 streams:
"A: N_A=6, \\overline{x}_A=7.52,s_A=0.024\\\\\nB: N_B=5, \\overline{x}_B=7.49, s_B=0.032\\\\\nH_0: \\mu_A=\\mu_B, H_1: \\mu_A\\neq\\mu_B, \\alpha=0.05\\\\\n\\text{We assume that the level of acidity has normal distribution}.\\\\\nT=\\frac{\\overline{X}-\\overline{Y}}{\\sqrt{(n-1)S_1^2+(m-1)S_2^2}}\\sqrt{\\frac{nm(n+m-2)}{n+m}}\\\\\n\\text{We have } T\\approx 1.779.\\\\\nk=n+m-2=6+5-2=9\\\\\nt_{critical}=t_{critical}(\\alpha;k)=t_{critical}(0.05;9)\\approx 2.2622.\\\\\n(-\\infty; -2.2622)\\cup (2.2622;\\infty)\\text{ --- critical region}.\\\\\nT\\approx 1.779 \\text{ does not fall into the critical region. So we accept } H_0.\\\\\n\\text{There is no evidence that streams A and B have different acidity levels}."
Comments
Leave a comment