a)
"=\\bigg[{6xy-y^2 \\over 18}\\bigg]\\begin{matrix}\n 2 \\\\\n 1\n\\end{matrix}={12x-4-6x+1\\over 18}={2x-1\\over 6}"
"={x\\over 3}-{1\\over 6},\\ for\\ 1<x<3"
"h(y)=\\displaystyle\\int_{-\\infin}^{\\infin}f(x,y)dx=\\displaystyle\\int_{1}^{3}{3x-y\\over 9}dx="
"=\\bigg[{3x^2-2xy \\over 18}\\bigg]\\begin{matrix}\n 3 \\\\\n 1\n\\end{matrix}={27-6y-3+2y\\over 18}={12-2y\\over 9}="
"={4\\over 3}-{2y\\over 9},\\ for\\ 1<y<2"
b)
"=\\bigg[{x^3 \\over 9}-{x^2 \\over 12}\\bigg]\\begin{matrix}\n 3 \\\\\n 1\n\\end{matrix}={27 \\over 9}-{9 \\over 12}-({1 \\over 9}-{1 \\over 12})={20\\over 9}"
"=\\bigg[{x^4 \\over 12}-{x^3 \\over 18}\\bigg]\\begin{matrix}\n 3 \\\\\n 1\n\\end{matrix}={81 \\over 12}-{27 \\over 18}-({1 \\over 12}-{1 \\over 18})={47\\over 9}"
"V(X)=E(X^2)-(E(X))^2={47\\over 9}-({20\\over 9})^2={23\\over 81}"
"=\\bigg[{4y^2 \\over 6}-{2y^3 \\over 27}\\bigg]\\begin{matrix}\n 2 \\\\\n 1\n\\end{matrix}={16 \\over 6}-{16 \\over 27}-({4 \\over 6}-{2 \\over 27})={40\\over 27}"
"E(Y^2)=\\displaystyle\\int_{-\\infin}^{\\infin}y^2h(y)dy=\\displaystyle\\int_{1}^{2}({4y^2\\over 3}-{2y^3\\over 9})dy="
"=\\bigg[{4y^3 \\over 9}-{2y^4 \\over 36}\\bigg]\\begin{matrix}\n 2 \\\\\n 1\n\\end{matrix}={32 \\over 9}-{32 \\over 36}-({4 \\over 9}-{2 \\over 36})={41\\over 18}"
"V(Y)=E(Y^2)-(E(Y))^2={41\\over 18}-({40\\over 27})^2={121\\over 1458}"
c) The random variables X and Y are said to be statistically independent if and only if
for all "(x, y)" within their range.
"={24x-4xy-12+2y\\over 54}={12x-2xy-6+y\\over 27}\\not={3x-y\\over 9}=f(x,y)"
Let "x=1.5, y=1.25"
"h(1.25)={12-2(1.25)\\over 9}={19\\over 18}"
"g(1.5)h(1.25)={1\\over 3}({19\\over 18})={19\\over 54}"
"f(1.5,1.25)={3(1.5)-1.25\\over 9}={13\\over 36}\\not={19\\over 54}"
So the random variables "X" and "Y" are not independent.
Comments
Leave a comment