"\\sigma_0=240\\\\\nN=8\\\\\ns=300\\\\\n\\text{We assume that the breaking strengths has normal distribution}.\\\\\na)\\alpha=0.05\\\\\nH_0:\\sigma^2=\\sigma_0^2=240^2, H_1: \\sigma^2\\neq\\sigma_0^2=240^2\\\\\n\\text{We will use the following random variable:}\\\\\n\\chi^2=\\frac{(N-1)s^2}{\\sigma_0^2}\\text{ where } S^2\\text{ is a random value}\\\\\n\\text{of corrected variance}.\\\\\n\\text{This random variable has }\\chi^2\\text{-distribution with } \\\\\nk=N-1=8-1=7 \\text{ degree of freedom}.\\\\\n\\text{Observed value:}\\\\\n\\chi^2\\approx 10.9375.\\\\\n\\text{Critical values:}\\\\\n\\chi^2_{critical_{left}}=\\chi^2_{critical}(1-\\alpha\/2;k)\\approx 1.6899.\\\\\n\\chi^2_{critical_{right}}=\\chi^2_{critical}(\\alpha\/2;k)\\approx 16.013.\\\\\n\\text{Critical region: }(-\\infty;1.6899)\\cup (16.013;\\infty)\\\\\n\\text{Our observed value does not fall into the critical region}.\\\\\n\\text{So we accept } H_0.\\\\\n\\text{Variability did not change after a change}\\\\\n\\text{in the process of manufacture}.\\\\\nb)\\alpha=0.01\\\\\n\\text{Critical values:}\\\\\n\\chi^2_{critical_{left}}\\approx 0.9893\\\\\n\\chi^2_{critical_{right}}\\approx 20.278\\\\\n\\text{Critical region: }(-\\infty;0.9893)\\cup (20.278;\\infty)\\\\\n\\text{Our critical value does not fall into the critical region.}\\\\\n\\text{So we accept } H_0.\\\\\n\\text{Variability did not change after a change}\\\\\n\\text{in the process of manufacture}."
Comments
Leave a comment