"X\\text{ is independent variable}, Y\\text{ is a dependent variable}.\\\\\ny=mx+b\\\\\nm=\\frac{\\overline{xy}-\\overline{x}\\ \\overline{y}}{\\overline{x}^2-(\\overline{x})^2}\\\\\nb=\\overline{y}-m\\overline{x}\\\\\n3y-5x+108=0\\\\\ny=\\frac{5}{3}x-36\\\\\nm=\\frac{5}{3}\\\\\nb=-36\\\\\n-36=44-\\frac{5}{3}\\overline{x}\\\\\n\\overline{x}=48\\\\\nm=\\rho\\frac{S_{Y}}{S_{X}}\\text{ where }\\rho \\text{ is a correlation coefficient and }\\\\\nS_{Y}, S_{X} \\text{ are sample standard deviations of } X \\text{ and } Y\\\\\n\\text{respectively}.\\\\\nS_{X}=\\frac{9}{16}S_{Y}\\\\\n\\frac{S_{Y}}{S_{X}}=\\frac{16}{9}\\\\\n\\frac{5}{3}=\\rho\\frac{16}{9}\\\\\n\\rho=\\frac{\\frac{5}{3}}{\\frac{16}{9}}=0.9375"
Comments
Leave a comment