"a) H_0: \\mu_1=\\mu_2; H_1:\\mu_1\\neq \\mu_2\\text{ (two-sided)}.\\\\\n\\alpha=0.05\\\\\n\\overline{x}_1=20\\\\\n\\overline{x}_2=15\\\\\ns_1=2\\\\\ns_2=8\\\\\nn=m=1000\\\\\n\\text{We will use the following random variable:}\\\\\nZ=\\frac{\\overline{X}-\\overline{Y}}{\\sqrt{\\frac{D_e(X)}{n}+\\frac{D_e(Y)}{m}}}.\\\\Z=\\frac{20-15}{\\sqrt{\\frac{2^2}{1000}+\\frac{8^2}{1000}}}\\approx 19.17.\\\\\n\\Phi(z_{cr})=\\frac{1-\\alpha}{2}=0.475.\\\\\nz_{cr}=1.96.\\\\\n(-\\infty, -1.96)\\cup (1.96,\\infty)\\text{ --- critical region}.\\\\\nZ \\in \\text{critical region. So we reject } H_0.\\\\\nb)\\text{p-value}=2(0.5-\\Phi(19.17))\\approx 0\\text{ where }\\\\\n\\Phi(x)=\\frac{1}{\\sqrt{2\\pi}}\\int_0^x e^{-\\frac{z^2}{2}}dz.\\\\\n\\text{p-value}<\\alpha. \\text{ So we reject } H_0.\\\\\nc)H_0: \\mu_1=\\mu_2; H_1:\\mu_1>\\mu_2\\text{ (one-sided)}.\\\\\n\\text{We get } Z\\approx 19.17.\\\\\n\\Phi(z_{cr})=\\frac{1-2\\alpha}{2}=0.45.\\\\\nz_{cr}=1.64.\\\\\n(-\\infty, -1.64)\\cup (1.64,\\infty)\\text{ --- critical region}.\\\\\nZ \\in \\text{critical region. So we reject } H_0."
Comments
Leave a comment