Let X=personal daily usage of water,
use "z=\\frac{x-\\bar{x}}{\\sigma}=\\frac{x-24}{\\sqrt{39}}" to convert standard normal form,
i)
"P(X>33)=P(Z>\\frac{33-24}{\\sqrt{39}})\\\\\nP(X>33)=P(Z>1.44)\\\\"
using table or calculator,
"P(X>33)=0.0749\\\\"
Percentage of the population uses more than 33 liters=7.49%
ii)
"P(16<X<27)=P(\\frac{16-24}{\\sqrt{39}}<Z<\\frac{27-24}{\\sqrt{39}})\\\\\nP(16<X<27)=P(-1.28<Z<0.48)\\\\\nP(16<X<27)=P(-1.28<Z<0)\\\\ \n\\hspace{12 em}+P(0<Z<0.48)\\\\\nP(16<X<27)=P(0<Z<1.28)\\\\ \n\\hspace{12 em}+P(0<Z<0.48)\\\\"
using table or calculator,
"P(16<X<27)=0.3997+0.1844=0.5841"
Percentage of the population uses between 16 and 27 liters=58.41%
iii)
"P(12>X)=P(\\frac{12-24}{\\sqrt{39}}>Z)\\\\\nP(12>X)=P(-1.92>Z)\\\\"
using table or calculator,
"P(12>X)=0.0274\\\\"
Probability of finding a person who uses less than 12 liters=0.0274
iv)
here the task is to find z, such that
"P(z<Z)=0.22\\\\"
using table,
"z=-0.772\\\\\nz=\\frac{x-24}{\\sqrt{39}}\\\\\n\\frac{x-24}{\\sqrt{39}}=-0.772\\\\\nx=19.179liters"
The maximum water usage for a person to qualify for a tax rebate=19.179 liters
Comments
Leave a comment