"a) Given \\; that, \u03bc=800, \u03c3=40, n=16, then,\\\\\n P(x<775)=P(Z<\\frac{775-800}{\\frac{40}{\\sqrt{16}}})\\\\\n=P(Z<-2.5)=0.5-P(0<Z<2.5)\\\\\n=0.5-0.4938=0.0062\\\\\n b) \\text{The confidence interval for the mean }\\\\\n\\text{can be calculated as follows:}\\\\\n \\bar x\u00b1Z_{\\frac{\u03b1}{2}}(\\frac{s}{\\sqrt{n}}),\\\\\n \\bar x=\\frac{9.8+10.2+10.4+9.8+10.0+10.2+9.6}{7}\\\\\n=\\frac{70}{7}=10,\\\\\n Z_{\\frac{\u03b1}{2}}=Z_{\\frac{0.05}{2}}=Z_{0.025}=1.96,\\\\\n s^2=\\frac{\u2211(x_{i}-x)^2}{n-1}\\\\\n=\\frac{(9.8-10)^2+(10.2-10)^2+...+(9.6-10)^2}{6}\\\\\n=\\frac{0.48}{6}=0.08,\\\\\n s=\\sqrt{s^2},\\\\\n \\text{ the lower limit }= 10-1.96(\\frac{\\sqrt{0.08}}{\\sqrt{7}})\\\\\n\u22489.79,\\\\\n \\text{ the upper limit} = 10+1.96(\\frac{\\sqrt{0.08}}{\\sqrt{7}})\\\\\n\u224810.21,\\\\\n \\text{so the confidence interval is}\\\\ 9.79\\leq \\bar x \\leq 10.21\\\\\n c) \\text{The confidence interval for the actual }\\\\\n\\text{proportion can be calculated as follows:}\\\\\n \\hat p \u00b1Z_{\\frac{\u03b1}{2}}(\\sqrt {\\frac{p (1-p )}{n}}),\\\\\n \\hat p =\\frac{340}{500}=0.68,\\\\\n Z_{\\frac{\u03b1}{2}}=Z_{\\frac{0.05}{2}}=Z_{0.025}=1.96,\\\\\n \\text{the lower limit }= 0.68-1.96(\\sqrt {\\frac{0.68 (1-0.68 )}{500}})\\\\\n\u22480.639,\\\\\n \\text{the upper limit }= 0.68+1.96(\\sqrt {\\frac{0.68 (1-0.68 )}{500}})\\\\\n\u22480.721,\\\\\n \\text{so the confidence interval is}\\\\\n 0.639\\leq \\hat p \\leq 0.721"
Comments
Dear Faides Nakaanza, You are welcome. We are glad to be helpful. If you liked our service, please press a like-button beside the answer field. Thank you!
This is so helpful
Leave a comment