4.2.1) "P(A)=\\frac{Production\\ employees}{Totalemployees}=\\frac{40}{50}=0.8"
"\\bold{P(A)=\\frac{40}{50}=0.8}"
4.2.2) "P(A\\cup B )=P(A)+P(B)-P(A\\cap B)"
"P(A\\cup B )=P(A)+P(B)-P(A|B)P(B)"
where,
"P(B)=\\frac{Agreed\\ employees}{Total\\ employees}=\\frac{25}{50}=0.5\\\\\nP(A|B)=\\frac{Agreed\\ production\\ employees}{Agreed\\ Employees}=\\frac{17}{25}=0.68\\\\"
"P(A\\cup B )=0.8+0.5-0.68*0.5\\\\\nP(A\\cup B )=0.96\\\\\n\\bold{P(A\\ or\\ B )=0.96}"
4.2.3) "P(C \\cap D)=\\frac{Disagreed\\ office\\ employees\\ }{Total\\ employees}\\\\"
"P(C \\cap D)=\\frac{2}{50}\\\\\nP(C\\cap D)=0.04\\\\\n\\bold{P(C\\ and\\ D)=0.04}"
4.2.3) "P(C|D)=\\frac{P(C\\cap D)}{P(D)}"
where,
"P(D)=\\frac{Disgreed\\ employees}{Total\\ employees}=\\frac{25}{50}=0.5\\\\"
"P(C|D)=\\frac{0.04}{0.5}\\\\\n\\bold{P(C|D)=0.08}"
Comments
Leave a comment