"\\bar{x_2}={16.02+16.03+15.97+16.04+15.96\\over 10}+"
"+{16.02+16.01+16.01+15.99+16.00\\over 10}=16.005"
Given that "\\sigma_1=0.020, \\sigma_2=0.025."
a.The null and alternative hypothesis
"H_0:\\mu_1-\\mu_2=0"
"H_1:\\mu_1-\\mu_2\\not=0"
This corresponds to a two-tailed test, for which a z-test for two population means, with known population standard deviations will be used.
The test statistic is
b. Calculate p-value
"=2P(Z<-0.9877)\\approx2(0.16165)=0.3233"
Since "p=0.3233>0.05," it is concluded that the null hypothesis is not rejected.
There is not sufficient evidence to support the claim that the population means are not equal.
Therefore, the engineer is correct that both machine fill to the same mean net volume, whether or not this volume is 16.0 ounces.
c. The power is the probability of rejecting the null hypothesis when the alternative hypothesis is true.
"\\bar{x_1}-\\bar{x_2}=(\\mu_1-\\mu_2)-z_{\\alpha\/2}\\cdot\\sqrt{{\\sigma_1^2 \\over n_1}+{\\sigma^2 \\over n_2}}="
"=0-1.96\\cdot\\sqrt{{(0.020)^2 \\over10}+{(0.025)^2 \\over 10}}=-0.0198"
"\\bar{x_1}-\\bar{x_2}=(\\mu_1-\\mu_2)+z_{\\alpha\/2}\\cdot\\sqrt{{\\sigma_1^2 \\over n_1}+{\\sigma^2 \\over n_2}}="
"=0+1.96\\cdot\\sqrt{{(0.020)^2 \\over10}+{(0.025)^2 \\over 10}}=0.0198"
"z={(\\bar{x_1}-\\bar{x_2})-(\\mu_1-\\mu_2) \\over \\sqrt{{\\sigma_1^2 \\over n_1}+{\\sigma^2 \\over n_2}}}={0.0198-0.04\\over \\sqrt{{(0.020)^2 \\over10}+{(0.025)^2 \\over 10}}}\\approx-1.9952"
Determine the probability of rejecting of the null hypothesis
"=P(Z<-5.9066)+P(Z>-1.9952)="
"=P(Z<-5.9066)+P(Z<1.9952)\\approx"
"\\approx0.0000000017462+0.976989\\approx0.9770"
Comments
Leave a comment