Question #110663
Two machines are used for filling plastic bottles with a net volume of 16.0 ounces. The fill volume can be assumed normal, with standard deviation 1 = 0.020 and 2 = 0.025 ounces. A member of the quality engineering staff suspects that both machine fill to the same mean net volume, whether or not this volume is 16.0 ounces. A random sample of 10 bottles is taken from the output of each machine.
Machine 1 Machine 2
16.03 16.01 16.02 16.03
16.04 15.96 15.97 16.04
16.05 15.98 15.96 16.02
16.05 16.02 16.01 16.01
16.02 15.99 15.99 16.00
(a) Do you think the engineer is correct? Use  = 0.05.
(b) What is the P-value for this test?
(c) What is the power of the test in part (a) for a true difference in mean of 0.04?
1
Expert's answer
2020-04-21T15:37:15-0400
x1ˉ=16.03+16.01+16.04+15.96+16.0510+\bar{x_1}={16.03+16.01+16.04+15.96+16.05\over 10}+


+15.98+16.05+16.02+16.02+15.9910=16.015+{15.98+16.05+16.02+16.02+15.99\over 10}=16.015

x2ˉ=16.02+16.03+15.97+16.04+15.9610+\bar{x_2}={16.02+16.03+15.97+16.04+15.96\over 10}+

+16.02+16.01+16.01+15.99+16.0010=16.005+{16.02+16.01+16.01+15.99+16.00\over 10}=16.005

Given that σ1=0.020,σ2=0.025.\sigma_1=0.020, \sigma_2=0.025.

a.The null and alternative hypothesis

H0:μ1μ2=0H_0:\mu_1-\mu_2=0

H1:μ1μ20H_1:\mu_1-\mu_2\not=0

This corresponds to a two-tailed test, for which a z-test for two population means, with known population standard deviations will be used.

The test statistic is


z=x1ˉx2ˉσ12n1+σ2n2=16.01516.005(0.020)210+(0.025)2100.9877z={\bar{x_1}-\bar{x_2} \over \sqrt{{\sigma_1^2 \over n_1}+{\sigma^2 \over n_2}}}={16.015-16.005 \over \sqrt{{(0.020)^2 \over10}+{(0.025)^2 \over 10}}}\approx0.9877



 b. Calculate p-value


p=P(Z<0.9877 or Z>0.9877)=p=P(Z<-0.9877\ or\ Z>0.9877)=

=2P(Z<0.9877)2(0.16165)=0.3233=2P(Z<-0.9877)\approx2(0.16165)=0.3233

Since p=0.3233>0.05,p=0.3233>0.05, it is concluded that the null hypothesis is not rejected.

There is not sufficient evidence to support the claim that the population means are not equal.

Therefore, the engineer is correct that both machine fill to the same mean net volume, whether or not this volume is 16.0 ounces. 


c. The power is the probability of rejecting the null hypothesis when the alternative hypothesis is true.


zα/2=±1.96z_{\alpha/2}=\pm1.96

x1ˉx2ˉ=(μ1μ2)zα/2σ12n1+σ2n2=\bar{x_1}-\bar{x_2}=(\mu_1-\mu_2)-z_{\alpha/2}\cdot\sqrt{{\sigma_1^2 \over n_1}+{\sigma^2 \over n_2}}=

=01.96(0.020)210+(0.025)210=0.0198=0-1.96\cdot\sqrt{{(0.020)^2 \over10}+{(0.025)^2 \over 10}}=-0.0198

x1ˉx2ˉ=(μ1μ2)+zα/2σ12n1+σ2n2=\bar{x_1}-\bar{x_2}=(\mu_1-\mu_2)+z_{\alpha/2}\cdot\sqrt{{\sigma_1^2 \over n_1}+{\sigma^2 \over n_2}}=

=0+1.96(0.020)210+(0.025)210=0.0198=0+1.96\cdot\sqrt{{(0.020)^2 \over10}+{(0.025)^2 \over 10}}=0.0198


z=(x1ˉx2ˉ)(μ1μ2)σ12n1+σ2n2=0.01980.04(0.020)210+(0.025)2105.9066z={(\bar{x_1}-\bar{x_2})-(\mu_1-\mu_2) \over \sqrt{{\sigma_1^2 \over n_1}+{\sigma^2 \over n_2}}}={-0.0198-0.04\over \sqrt{{(0.020)^2 \over10}+{(0.025)^2 \over 10}}}\approx-5.9066

z=(x1ˉx2ˉ)(μ1μ2)σ12n1+σ2n2=0.01980.04(0.020)210+(0.025)2101.9952z={(\bar{x_1}-\bar{x_2})-(\mu_1-\mu_2) \over \sqrt{{\sigma_1^2 \over n_1}+{\sigma^2 \over n_2}}}={0.0198-0.04\over \sqrt{{(0.020)^2 \over10}+{(0.025)^2 \over 10}}}\approx-1.9952

Determine the probability of rejecting of the null hypothesis


P(Z<5.9066 or Z>1.9952)=P(Z<-5.9066\ or\ Z>-1.9952)=

=P(Z<5.9066)+P(Z>1.9952)==P(Z<-5.9066)+P(Z>-1.9952)=

=P(Z<5.9066)+P(Z<1.9952)=P(Z<-5.9066)+P(Z<1.9952)\approx

0.0000000017462+0.9769890.9770\approx0.0000000017462+0.976989\approx0.9770


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS