Question #110620
If log10X is normally distributed with mean 4 and variance 4, find the probability of 1.202<X<83180000.(Given that log10 1202=3.08, log10 8310=3.92 )
1
Expert's answer
2020-04-20T05:34:53-0400

P=P(1.202<X<83180000)P=P(1.202<X<83180000)


let log normal distribution,

P=P(log101.202<log10X<log1083180000)P=P(\log_{10}1.202<\log_{10}X<\log_{10}83180000)

P=P(log10(12021000<log10X<log10(8318104))P=P(3.083<log10X<3.92+4)P=P(0.08<log10X<7.92)P=P(\log_{10}(\frac{1202}{1000}<\log_{10}X<\log_{10}(8318*10^4))\\ P=P(3.08-3<\log_{10}X<3.92+4)\\ P=P(0.08<\log_{10}X<7.92)\\


convert to standard form using by

z=xxˉσz=\frac{x-\bar{x}}{\sigma}

P=P(0.0842<Z<7.9242)P=P(0.0842<Z<7.9242)P=P(1.96<Z<1.96)P=P(1.96<Z<0)+P(0<Z<1.96)P=P(\frac{0.08-4}{2}<Z<\frac{7.92-4}{2})\\ P=P(\frac{0.08-4}{2}<Z<\frac{7.92-4}{2})\\ P=P(-1.96<Z<1.96)\\ P=P(-1.96<Z<0)+P(0<Z<1.96)\\

using calculator or table,

P=0.475+0.475P=0.95P=0.475+0.475\\ \bold{P=0.95}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS