a) We need to construct the "90\\%" confidence interval for the population proportion. We have been provided with the following information about the sample proportion:
"\\begin{matrix}\n Sample\\ proportion & \\hat{p}=0.098 \\\\\n Sample\\ Size & n=500\n\\end{matrix}"
The critical value for "\\alpha=0.05" is "z_c=z_{1-\\alpha\/2}=1.645." The corresponding confidence interval is computed as shown below:
"=\\big(\\hat{p}-z_c\\sqrt{{\\hat{p}(1-\\hat{p}) \\over n}},\\hat{p}+z_c\\sqrt{{\\hat{p}(1-\\hat{p}) \\over n}} \\big)"
"=(0.098-1.645\\sqrt{{0.098(1-0.098) \\over 500}},0.098+1.645\\sqrt{{0.098(1-0.098) \\over 500}})="
"=(0.076,0.120)"
b) We compute the standard errors using the formula:
"width=p+z_c\\sqrt{{p(1-p) \\over n}}-(p-z_c\\sqrt{{p(1-p) \\over n}})="
"=2z_c\\sqrt{{p(1-p) \\over n}}=2z_c\\times SE"
"z_c=z_{1-\\alpha\/2}=1.96"
Comments
Leave a comment