1) Point estimate of population proportion of successes "\\hat{p}=\\frac{290}{500}=0.58."
2) "n\\hat{p}=500\\cdot 0.58\\geq10,""n(1-\\hat{p})=500(1-0.58)\\geq10". So we can approximate the binomial distribution with a normal distribution.
"z-value=1.96\\\\\n\\hat{q}=1-\\hat{p}=1-0.58=0.42.\\\\\nEBP=z-value\\sqrt{\\frac{\\hat{p}\\hat{q}}{n}}=1.96\\sqrt{\\frac{(0.58)(0.42)}{500}}\\approx 0.043.\\\\\n(\\hat{p}-EBP;\\hat{p}+EBP)\\\\\n(0.58-0.043;0.58+0.043)\\\\\n(0.537;0.623)\\text{ --- our confidence interval}."
3) "H_0: p=0.6, H_1:p<0.6" (left-tailed test)
"pn=(0.6)500>5\\\\\n(1-p)n=(0.4)500>5"
So we will use z-test.
"z-stat=\\frac{\\hat{p}-p}{\\sqrt{\\frac{p(1-p)}{n}}}=\\frac{0.58-0.6}{\\sqrt{\\frac{(0.6)(0.4)}{500}}}\\approx -0.9129.\\\\\n\\Phi(z_{cr})=\\frac{1-2\\alpha}{2}=0.45.\\\\\nz_{cr}=1.64.\\\\\n(-\\infty,-1.64)\\text{is the critical region}.\\\\\nz-stat\\text{ is not in the critical region. So we accept, do not reject } H_0."
Comments
Leave a comment