Question #107179
In a random sample of 500 observations, 290 successes and 210 failures were detected.

1. Calculate the point estimate of the population proportion of success.

2. Estimate with 95% confidence the population proportion of success.

Use a hypothesis test with significance level 0.05 to test whether the population proportion of success is less than 0.6

● state the null and alternative hypothesis
●state and calculate the appropriate test statistic
●determine the critical value of the test and state the test and state rejection region
●draw an appropriate conclusion
●state whether or not you reject the null hypothesis
1
Expert's answer
2020-03-31T11:17:10-0400

1) Point estimate of population proportion of successes p^=290500=0.58.\hat{p}=\frac{290}{500}=0.58.

2) np^=5000.5810,n\hat{p}=500\cdot 0.58\geq10,n(1p^)=500(10.58)10n(1-\hat{p})=500(1-0.58)\geq10. So we can approximate the binomial distribution with a normal distribution.

zvalue=1.96q^=1p^=10.58=0.42.EBP=zvaluep^q^n=1.96(0.58)(0.42)5000.043.(p^EBP;p^+EBP)(0.580.043;0.58+0.043)(0.537;0.623) — our confidence interval.z-value=1.96\\ \hat{q}=1-\hat{p}=1-0.58=0.42.\\ EBP=z-value\sqrt{\frac{\hat{p}\hat{q}}{n}}=1.96\sqrt{\frac{(0.58)(0.42)}{500}}\approx 0.043.\\ (\hat{p}-EBP;\hat{p}+EBP)\\ (0.58-0.043;0.58+0.043)\\ (0.537;0.623)\text{ --- our confidence interval}.

3) H0:p=0.6,H1:p<0.6H_0: p=0.6, H_1:p<0.6 (left-tailed test)

pn=(0.6)500>5(1p)n=(0.4)500>5pn=(0.6)500>5\\ (1-p)n=(0.4)500>5

So we will use z-test.

zstat=p^pp(1p)n=0.580.6(0.6)(0.4)5000.9129.Φ(zcr)=12α2=0.45.zcr=1.64.(,1.64)is the critical region.zstat is not in the critical region. So we accept, do not reject H0.z-stat=\frac{\hat{p}-p}{\sqrt{\frac{p(1-p)}{n}}}=\frac{0.58-0.6}{\sqrt{\frac{(0.6)(0.4)}{500}}}\approx -0.9129.\\ \Phi(z_{cr})=\frac{1-2\alpha}{2}=0.45.\\ z_{cr}=1.64.\\ (-\infty,-1.64)\text{is the critical region}.\\ z-stat\text{ is not in the critical region. So we accept, do not reject } H_0.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS