"i) F(x)=\\frac{1}{\\sqrt{2\\pi}\\sigma}\\int_{-\\infty}^{x}e^{-\\frac{(t-a)^2}{2\\sigma^2}}dt.\\\\\na=150\\\\\n\\sigma=50\\\\\nF(x)=\\frac{1}{\\sqrt{2\\pi}50}\\int_{-\\infty}^{x}e^{-\\frac{(t-150)^2}{2\\cdot 50^2}}dt."
So we should find "F(95)."
"F(95)=\\frac{1}{\\sqrt{2\\pi}50}\\int_{-\\infty}^{95}e^{-\\frac{(t-150)^2}{2\\cdot 50^2}}dt=\\frac{1}{\\sqrt{2\\pi}}\\int_{-\\infty}^{-1.1}e^{-\\frac{z^2}{2}}dz\\approx\\frac{1}{2}-0.3643=0.1357" (here we used substitution "z=\\frac{t-150}{50}" ).
"ii) P\\{\\xi>w\\}=0.1"
We should find "w".
"P\\{\\xi>w\\}=1-F(w)=0.1\\\\\nF(w)=0.9.\\\\\n\\frac{1}{\\sqrt{2\\pi}}\\int_{-\\infty}^{\\frac{w-150}{50}}e^{-\\frac{z^2}{2}}dz=0.9\\\\\n0.5+\\frac{1}{\\sqrt{2\\pi}}\\int_{0}^{\\frac{w-150}{50}}e^{-\\frac{z^2}{2}}dz=0.9\\\\\n\\frac{1}{\\sqrt{2\\pi}}\\int_{0}^{\\frac{w-150}{50}}e^{-\\frac{z^2}{2}}dz=0.4\\\\\n\\frac{w-150}{50}=1.28\\\\\nw=214."
"iii)" We should find the proportion of bananas that are medium. The proportion equals
"F(205)-F(95)\\approx \\frac{1}{\\sqrt{2\\pi}}\\int_{-\\infty}^{1.1}e^{-\\frac{z^2}{2}}dz-0.1357\\approx 0.5+0.3643-0.1357=0.7286."
Comments
Leave a comment