Answer to Question #95334 in Real Analysis for Rajni

Question #95334
Let f: [-5,5]-->R be defined by f(x) =5[x] +x^2 , where [x] denotes the greatest integer function . Show that this function is integrable .Is this function also differentiable ? Justify your answer ?
1
Expert's answer
2019-10-01T11:06:22-0400

55f(x)dx=55x2dx+555[x]dx\int\limits_{-5}^5f(x)dx=\int\limits_{-5}^5x^2dx+5\int\limits_{-5}^5[x]dx. The integral 55x2dx\int\limits_{-5}^5x^2dx exists. Show that integral 55[x]dx\int\limits_{-5}^5[x]dx also exists.

55[x]dx=k=54kk+1[x]dx=k=54kk+1kdx\int\limits_{-5}^5[x]dx=\sum\limits_{k=-5}^4\int\limits_k^{k+1}[x]dx=\sum\limits_{k=-5}^4\int\limits_k^{k+1}kdx , so integral 55[x]dx\int\limits_{-5}^5[x]dx exists.

ff is not differentiable in [4,5]Z[-4,5]\cap\mathbb Z, because left derivative of ff in this set do not exist .

Indeed, let k[4,5]Zk\in[-4,5]\cap\mathbb Z , so left derivative in point kk islimx0+f(k)f(kx)x=limx0+5[k]+k25[kx](kx)2x=\lim\limits_{x\to 0+}\frac{f(k)-f(k-x)}{x}=\lim\limits_{x\to 0+}\frac{5[k]+k^2-5[k-x]-(k-x)^2}{x}=

=limx0+5k+k25[kx]k2+2kxx2x=limx0+5k5[kx]+2kxx2x==\lim\limits_{x\to 0+}\frac{5k+k^2-5[k-x]-k^2+2kx-x^2}{x}=\lim\limits_{x\to 0+}\frac{5k-5[k-x]+2kx-x^2}{x}=

=2k+5limx0+k[kx]x=2k+5\lim\limits_{x\to 0+}\frac{k-[k-x]}{x}

If x(0,1)x\in (0,1) , then [kx]=k1[k-x]=k-1 , so limx0+k[kx]x=limx0+k(k1)x=+\lim\limits_{x\to 0+}\frac{k-[k-x]}{x}=\lim\limits_{x\to 0+}\frac{k-(k-1)}{x}=+\infty

So we obtain that left derivatives of ff in [4,5]Z[-4,5]\cap\mathbb Z equal ++\infty , that is, do not exist.

Answer: ff is integrable, but not differentiable.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment