To determine intervals where the function strictly increases or decreases, we need to first find the derivative of the function
f(x)=4x3−6x2−72x+15
dxdf(x)=dxd(4x3−6x2−72x+15)=12x2−12x−72=12(x2−x−6)=12(x−3)(x+2) .
Putting f′(x)=0.
12(x−3)(x+2)=0(x−3)(x+2)=0
So x=3 and x=−2 .
The points divide the real line into 3 disjoint intervals, i.e.
(−∞;−2)⋃(−2;3)⋃(3;∞)
intervalvalue xsign of f′(x)=12(x−3)(x+2)nature of function f(−∞;−2)x<−2(−)(−)=+>0 increasing (−2;3)−2<x<3(−)(+)=−<0 decreasing(3;∞)x>3(+)(+)=+>0 increasing
f(x) is increasing in (−∞;−2)⋃(3;∞)
f(x) is decreasing in (−2;3)
Comments