Question #95333
Identify the intervals in which the function f on R defined by
f(x) = 4x^3-6x^2-72x+15 is both increasing and decreasing ?
1
Expert's answer
2019-10-01T11:18:55-0400

To determine intervals where the function strictly increases or decreases, we need to first find the derivative of the function

f(x)=4x36x272x+15f(x) = 4 x^3 - 6 x^2 - 72 x + 15


ddxf(x)=ddx(4x36x272x+15)=12x212x72=12(x2x6)=12(x3)(x+2)\frac{d}{dx}f(x)=\frac{d}{dx}(4 x^3 - 6 x^2 - 72 x + 15) = 12 x^2 -12x -72=12( x^2 -x -6)=12(x-3)(x+2) .


Putting f(x)=0.f'(x)=0.

12(x3)(x+2)=0(x3)(x+2)=012(x-3)(x+2)=0 \\ (x-3)(x+2)=0

So x=3x=3 and x=2x=-2 .

The points divide the real line into 3 disjoint intervals, i.e.

(;2)(2;3)(3;)(-\infty; -2)\bigcup (-2;3)\bigcup (3;\infty)

 interval(;2)(2;3)(3;)value xx<22<x<3x>3sign of f(x)=12(x3)(x+2)()()=+>0()(+)=<0(+)(+)=+>0nature of function f increasing  decreasing increasing \def\arraystretch{1.5} \begin{array}{c|c|c|c} \text{ interval} & (-\infty;-2) & (-2;3) &(3;\infty) \\ \hline \text{value } x& x<-2 & -2<x<3 & x>3 \\ \hline \text{sign of } f'(x)=12(x-3)(x+2)& (-)(-)=+>0&(-)(+)=-<0&(+)(+)=+>0\\ \hline \text{nature of function } f & \text{ increasing } &\text{ decreasing} & \text{ increasing } \end{array}

f(x) is increasing in (;2)(3;)(-\infty; -2)\bigcup (3;\infty)

f(x) is decreasing in (2;3)(-2;3)



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS