Remember that
y= f(x) is uniformly continuous on ]-1,1] if ∀ϵ>0∀x,y∈]−1,1]∣x−y∣<δ⇒∣f(x)−f(y)∣<ϵ .
If ∀x,y∈]−1,1] :
∣x3−y3∣=∣(x−y)(x2+yx+y2)∣==∣x−y∣∣x2+yx+y2∣≤≤∣x−y∣(x2+∣yx∣+y2)<δ∣1+1+1∣=3δ
Proof.
Let ϵ>0. Choose δ=3ϵ .
Then ∀x,y∈]−1,1] with ∣x−y∣<δ we have
∣x3−y3∣=∣(x−y)(x2+yx+y2)∣==∣x−y∣∣x2+yx+y2∣≤≤∣x−y∣(x2+∣yx∣+y2)<δ∣1+1+1∣=3δ=33ϵ=ϵ .
If ∣x−y∣<δ :∣x3−y3∣<ϵ .
So
f(x)=x3 is uniformy continuous on ]-1,1] .
Since f(x) is uniformy continuous ]-1,1] then it is continuous at the point zero (x=0).
Comments