Question #95328
Show that the function f:]-1,1] [ --> R given by f(x) =x^3 is uniformly continuous and deduce that f is continuous at the point zero?
1
Expert's answer
2019-09-30T11:00:08-0400

Remember that

y= f(x) is uniformly continuous  on ]-1,1] if ϵ>0x,y]1,1]xy<δf(x)f(y)<ϵ\forall \epsilon >0 \forall x,y \in ]-1,1] \vert x-y\vert< \delta \Rightarrow \vert f(x)-f(y)\vert< \epsilon .


If x,y]1,1]\forall x,y \in ]-1,1] :

x3y3=(xy)(x2+yx+y2)==xyx2+yx+y2xy(x2+yx+y2)<δ1+1+1=3δ|x^3 - y^3| = |(x - y) ( x^2 + yx + y^2)|= \\=|x - y| | x^2 + yx + y^2| \leq\\\leq |x - y|( x^2 + | yx| + y^2) <\delta |1+1+1| =3\delta

Proof.

Let ϵ>0.\epsilon >0 . Choose δ=ϵ3\delta= \frac{\epsilon}{3}  .

Then x,y]1,1]\forall x,y \in ]-1,1] with xy<δ\vert x-y\vert< \delta we have

x3y3=(xy)(x2+yx+y2)==xyx2+yx+y2xy(x2+yx+y2)<δ1+1+1=3δ=3ϵ3=ϵ|x^3 - y^3| = |(x - y) ( x^2 + yx + y^2)|= \\=|x - y| | x^2 + yx + y^2| \leq \\ \leq |x - y|( x^2 + | yx| + y^2) <\delta |1+1+1| =3\delta=3\frac{\epsilon}{3}=\epsilon\\ .


If xy<δ\vert x-y\vert< \delta :x3y3<ϵ|x^3 - y^3| <\epsilon .

So

f(x)=x3f(x)=x^3 is uniformy continuous on ]-1,1] .


Since f(x) is uniformy continuous ]-1,1]  then it  is continuous at the point zero (x=0).


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS