ANSWER If f(x)={x7sin1x,ifx∈(−∞,0)∪(0,+∞)0,ifx=0f(x)=\begin{cases} { x }^{ 7 }\sin { \frac { 1 }{ x } } ,\quad if\quad x\in \left( -\infty ,0 \right) \cup \left( 0,+\infty \right) \quad \\ 0\quad \quad \quad \quad \quad \quad ,\quad if\quad x=0\quad \quad \end{cases}f(x)={x7sinx1,ifx∈(−∞,0)∪(0,+∞)0,ifx=0 then f′(x)={7x6−1x2⋅x7⋅cos1x,ifx∈(−∞,0)∪(0,+∞)0,ifx=0f'(x)=\begin{cases} 7{ x }^{ 6 }-\frac { 1 }{ { x }^{ 2 } } \cdot { x }^{ 7 }\cdot \cos { \frac { 1 }{ x } } ,\quad \quad \quad if\quad x\in \left( -\infty ,0 \right) \cup \left( 0,+\infty \right) \quad \\ \quad 0\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad ,\quad if\quad x=0 \end{cases}f′(x)={7x6−x21⋅x7⋅cosx1,ifx∈(−∞,0)∪(0,+∞)0,ifx=0 . By the definition f′(0)=limx→0f(x)−f(0)x=limx→0x7sin1xx=0f'(0)=\lim _{ x\rightarrow 0 }{ \frac { f(x)-f(0) }{ x } } =\lim _{ x\rightarrow 0 }{ \frac { { x }^{ 7 }\sin { \frac { 1 }{ x } } }{ x } } =0f′(0)=limx→0xf(x)−f(0)=limx→0xx7sinx1=0 , f"(x)=limx→0f′(x)−f′(0)x=limx→07x6−x5⋅cos1xxf"(x)=\lim _{ x\rightarrow 0 }{ \frac { f'(x)-f'(0) }{ x } } =\lim _{ x\rightarrow 0 }{ \frac { 7{ x }^{ 6 }-\quad \quad { x }^{ 5 }\cdot \cos { \frac { 1 }{ x } } }{ x } }f"(x)=limx→0xf′(x)−f′(0)=limx→0x7x6−x5⋅cosx1 =limx→0(7x5−x4cos1x)=0=\lim _{ x\rightarrow 0 }{ \left( 7{ x }^{ 5 }-{ x }^{ 4 }\cos { \frac { 1 }{ x } } \right) } =0=limx→0(7x5−x4cosx1)=0
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments